关于奥尔尚斯基所举例子中词语的简洁性

IF 0.5 4区 数学 Q3 MATHEMATICS
Matteo Pintonello, Pavel Shumyatsky
{"title":"关于奥尔尚斯基所举例子中词语的简洁性","authors":"Matteo Pintonello,&nbsp;Pavel Shumyatsky","doi":"10.1007/s00013-023-01955-x","DOIUrl":null,"url":null,"abstract":"<div><p>A group-word <i>w</i> is called concise if the verbal subgroup <i>w</i>(<i>G</i>) is finite whenever <i>w</i> takes only finitely many values in a group <i>G</i>. It is known that there are words that are not concise. In particular, Olshanskii gave an example of such a word, which we denote by <span>\\(w_o\\)</span>. The problem whether every word is concise in the class of residually finite groups remains wide open. In this note, we observe that <span>\\(w_o\\)</span> is concise in residually finite groups. Moreover, we show that <span>\\(w_o\\)</span> is strongly concise in profinite groups, that is, <span>\\(w_o(G)\\)</span> is finite whenever <i>G</i> is a profinite group in which <span>\\(w_o\\)</span> takes less than <span>\\(2^{\\aleph _0}\\)</span> values.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conciseness of the word in Olshanskii’s example\",\"authors\":\"Matteo Pintonello,&nbsp;Pavel Shumyatsky\",\"doi\":\"10.1007/s00013-023-01955-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A group-word <i>w</i> is called concise if the verbal subgroup <i>w</i>(<i>G</i>) is finite whenever <i>w</i> takes only finitely many values in a group <i>G</i>. It is known that there are words that are not concise. In particular, Olshanskii gave an example of such a word, which we denote by <span>\\\\(w_o\\\\)</span>. The problem whether every word is concise in the class of residually finite groups remains wide open. In this note, we observe that <span>\\\\(w_o\\\\)</span> is concise in residually finite groups. Moreover, we show that <span>\\\\(w_o\\\\)</span> is strongly concise in profinite groups, that is, <span>\\\\(w_o(G)\\\\)</span> is finite whenever <i>G</i> is a profinite group in which <span>\\\\(w_o\\\\)</span> takes less than <span>\\\\(2^{\\\\aleph _0}\\\\)</span> values.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01955-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01955-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 如果在一个群 G 中,当 w 只取有限多个值时,其言语子群 w(G) 是有限的,那么群词 w 就被称为简洁词。Olshanskii 举例说明了这样的词,我们用 \(w_o\) 表示它。在残差有限群类中,是否每个词都是简洁的,这个问题仍然悬而未决。在本文中,我们观察到 \(w_o\) 在剩余有限群中是简洁的。此外,我们还证明了 \(w_o\) 在无限群中是强简洁的,也就是说,只要 G 是一个无限群,其中 \(w_o\) 的取值小于 \(2^{\aleph _0}\) 值,那么 \(w_o(G)\) 就是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On conciseness of the word in Olshanskii’s example

A group-word w is called concise if the verbal subgroup w(G) is finite whenever w takes only finitely many values in a group G. It is known that there are words that are not concise. In particular, Olshanskii gave an example of such a word, which we denote by \(w_o\). The problem whether every word is concise in the class of residually finite groups remains wide open. In this note, we observe that \(w_o\) is concise in residually finite groups. Moreover, we show that \(w_o\) is strongly concise in profinite groups, that is, \(w_o(G)\) is finite whenever G is a profinite group in which \(w_o\) takes less than \(2^{\aleph _0}\) values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信