具有非线性诺伊曼边界条件和 $${\mathcal {C}}^1$ 域变化的反应扩散方程的收敛速率

IF 1.1 3区 数学 Q1 MATHEMATICS
Marcone C. Pereira, Leonardo Pires
{"title":"具有非线性诺伊曼边界条件和 $${\\mathcal {C}}^1$ 域变化的反应扩散方程的收敛速率","authors":"Marcone C. Pereira, Leonardo Pires","doi":"10.1007/s00028-023-00934-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose the compact convergence approach to deal with the continuity of attractors of some reaction–diffusion equations under smooth perturbations of the domain subject to nonlinear Neumann boundary conditions. We define a family of invertible linear operators to compare the dynamics of perturbed and unperturbed problems in the same phase space. All continuity arising from small smooth perturbations will be estimated by a rate of convergence given by the domain variation in a <span>\\({\\mathcal {C}}^1\\)</span> topology.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and $${\\\\mathcal {C}}^1$$ variation of the domain\",\"authors\":\"Marcone C. Pereira, Leonardo Pires\",\"doi\":\"10.1007/s00028-023-00934-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose the compact convergence approach to deal with the continuity of attractors of some reaction–diffusion equations under smooth perturbations of the domain subject to nonlinear Neumann boundary conditions. We define a family of invertible linear operators to compare the dynamics of perturbed and unperturbed problems in the same phase space. All continuity arising from small smooth perturbations will be estimated by a rate of convergence given by the domain variation in a <span>\\\\({\\\\mathcal {C}}^1\\\\)</span> topology.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00934-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00934-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了紧凑收敛法来处理某些反应扩散方程在非线性诺伊曼边界条件下的平滑扰动域吸引子的连续性问题。我们定义了一个可逆线性算子族,用于比较同一相空间中受扰动问题和未受扰动问题的动力学。所有由微小平滑扰动引起的连续性都将由\({\mathcal {C}}^1\) 拓扑中的域变化给出的收敛率来估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and $${\mathcal {C}}^1$$ variation of the domain

Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and $${\mathcal {C}}^1$$ variation of the domain

In this paper, we propose the compact convergence approach to deal with the continuity of attractors of some reaction–diffusion equations under smooth perturbations of the domain subject to nonlinear Neumann boundary conditions. We define a family of invertible linear operators to compare the dynamics of perturbed and unperturbed problems in the same phase space. All continuity arising from small smooth perturbations will be estimated by a rate of convergence given by the domain variation in a \({\mathcal {C}}^1\) topology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信