流形上多分量函数时间序列的 LRD 频谱分析

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Test Pub Date : 2024-01-12 DOI:10.1007/s11749-023-00913-7
Diana P. Ovalle–Muñoz, M. Dolores Ruiz–Medina
{"title":"流形上多分量函数时间序列的 LRD 频谱分析","authors":"Diana P. Ovalle–Muñoz, M. Dolores Ruiz–Medina","doi":"10.1007/s11749-023-00913-7","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (Fract Calc Appl Anal 25:1426–1458, 2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert–Schmidt operator norm are derived beyond structural assumptions. Weak-consistent estimation of the long-memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive–moving average (SPHARMA(p,q)) processes.</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LRD spectral analysis of multifractional functional time series on manifolds\",\"authors\":\"Diana P. Ovalle–Muñoz, M. Dolores Ruiz–Medina\",\"doi\":\"10.1007/s11749-023-00913-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (Fract Calc Appl Anal 25:1426–1458, 2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert–Schmidt operator norm are derived beyond structural assumptions. Weak-consistent estimation of the long-memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive–moving average (SPHARMA(p,q)) processes.</p>\",\"PeriodicalId\":51189,\"journal\":{\"name\":\"Test\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Test\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11749-023-00913-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-023-00913-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用 Ruiz-Medina (Fract Calc Appl Anal 25:1426-1458, 2022) 中引入的函数时间序列框架,探讨了流形跨时间随机场(RF)二阶结构的估计问题,该随机场显示了空间变化的长程依赖性(LRD)。在希尔伯特-施密特(Hilbert-Schmidt)算子规范之外,还推导出了积分周期图算子的渐近无偏性条件。在高斯背景下的半参数函数谱框架下实现了长记忆算子的弱一致性估计。此外,还分析了投影流形过程在不同流形尺度上显示短程依赖性(SRD)和长程依赖性的情况。在多分量积分球形函数自回归移动平均(SPHARMA(p,q))过程的背景下,模拟研究说明了这两种估计程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LRD spectral analysis of multifractional functional time series on manifolds

LRD spectral analysis of multifractional functional time series on manifolds

This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (Fract Calc Appl Anal 25:1426–1458, 2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert–Schmidt operator norm are derived beyond structural assumptions. Weak-consistent estimation of the long-memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive–moving average (SPHARMA(p,q)) processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信