通过用于血管树跟踪的 Cartan 型新数据驱动连接进行大地跟踪

IF 1.3 4区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nicky J. van den Berg, Bart M. N. Smets, Gautam Pai, Jean-Marie Mirebeau, Remco Duits
{"title":"通过用于血管树跟踪的 Cartan 型新数据驱动连接进行大地跟踪","authors":"Nicky J. van den Berg, Bart M. N. Smets, Gautam Pai, Jean-Marie Mirebeau, Remco Duits","doi":"10.1007/s10851-023-01170-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a data-driven version of the plus Cartan connection on the homogeneous space <span>\\({\\mathbb {M}}_2\\)</span> of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on <span>\\({\\mathbb {M}}_{2}\\)</span>. The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on <span>\\({\\mathbb {M}}_2\\)</span> that we compute by a new modified anisotropic fast-marching method.Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented <i>Mathematica</i> notebooks available at van den Berg (Data-driven left-invariant tracking in <i>Mathematica</i>, 2022).</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesic Tracking via New Data-Driven Connections of Cartan Type for Vascular Tree Tracking\",\"authors\":\"Nicky J. van den Berg, Bart M. N. Smets, Gautam Pai, Jean-Marie Mirebeau, Remco Duits\",\"doi\":\"10.1007/s10851-023-01170-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a data-driven version of the plus Cartan connection on the homogeneous space <span>\\\\({\\\\mathbb {M}}_2\\\\)</span> of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on <span>\\\\({\\\\mathbb {M}}_{2}\\\\)</span>. The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on <span>\\\\({\\\\mathbb {M}}_2\\\\)</span> that we compute by a new modified anisotropic fast-marching method.Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented <i>Mathematica</i> notebooks available at van den Berg (Data-driven left-invariant tracking in <i>Mathematica</i>, 2022).</p>\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-023-01170-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-023-01170-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们在二维位置和方向的同质空间 \({\mathbb {M}}_2\) 上引入了数据驱动版本的加 Cartan 连接。我们提出了一个定理,描述了关于这个新的数据驱动连接和相应的黎曼流形的所有最短曲线和直线(分别是平行速度和平行动量)。然后,我们利用这些最短曲线对定义在 \({\mathbb {M}}_{2}\) 上的多方向图像表示中的复杂脉管进行大地跟踪。数据驱动的 Cartan 连接描述了所有测地线的哈密顿流。它还允许我们通过全局最优大地线跟踪(抬升的)血管结构,从而改善对曲率和错位的适应性。我们通过对 \({\mathbb {M}}_2\) 上的距离图进行最陡下降来数值计算这些大地线,这些大地线是我们通过一种新的改良各向异性快速行进方法计算得出的。单根血管的跟踪是在多方向图像表示法中一次运行完成的,我们将得到的大地线投影到底层图像上。完整血管树的跟踪只需运行两次,并避免了事先分割、放置额外锚点和在大地模型之间动态切换。总之,我们提供了一种使用单一、灵活、透明、数据驱动的测地线模型进行测地线跟踪的方法,它提供了全局最优曲线,能正确跟踪视网膜图像中高度复杂的血管结构。本文中的所有实验都可以通过 van den Berg 网站上的 Mathematica 笔记本(Mathematica 中的数据驱动左不变跟踪,2022 年)重现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geodesic Tracking via New Data-Driven Connections of Cartan Type for Vascular Tree Tracking

Geodesic Tracking via New Data-Driven Connections of Cartan Type for Vascular Tree Tracking

We introduce a data-driven version of the plus Cartan connection on the homogeneous space \({\mathbb {M}}_2\) of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on \({\mathbb {M}}_{2}\). The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on \({\mathbb {M}}_2\) that we compute by a new modified anisotropic fast-marching method.Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented Mathematica notebooks available at van den Berg (Data-driven left-invariant tracking in Mathematica, 2022).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision 工程技术-计算机:人工智能
CiteScore
4.30
自引率
5.00%
发文量
70
审稿时长
3.3 months
期刊介绍: The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles. Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications. The scope of the journal includes: computational models of vision; imaging algebra and mathematical morphology mathematical methods in reconstruction, compactification, and coding filter theory probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science inverse optics wave theory. Specific application areas of interest include, but are not limited to: all aspects of image formation and representation medical, biological, industrial, geophysical, astronomical and military imaging image analysis and image understanding parallel and distributed computing computer vision architecture design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信