广义多维受激随机漫步的瞬态说明

Pub Date : 2024-01-11 DOI:10.1007/s10959-023-01311-3
Rodrigo B. Alves, Giulio Iacobelli, Glauco Valle
{"title":"广义多维受激随机漫步的瞬态说明","authors":"Rodrigo B. Alves, Giulio Iacobelli, Glauco Valle","doi":"10.1007/s10959-023-01311-3","DOIUrl":null,"url":null,"abstract":"<p>We consider a variant of the generalized excited random walk (GERW) in dimension <span>\\(d\\ge 2\\)</span> where the lower bound on the drift for excited jumps is time-dependent and decays to zero. We show that if the lower bound decays more slowly than <span>\\(n^{-\\beta _0}\\)</span> (<i>n</i> is time), where <span>\\(\\beta _0\\)</span> depends on the transitions of the process, the GERW is transient in the direction of the drift.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Transience of Generalized Multi-Dimensional Excited Random Walks\",\"authors\":\"Rodrigo B. Alves, Giulio Iacobelli, Glauco Valle\",\"doi\":\"10.1007/s10959-023-01311-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a variant of the generalized excited random walk (GERW) in dimension <span>\\\\(d\\\\ge 2\\\\)</span> where the lower bound on the drift for excited jumps is time-dependent and decays to zero. We show that if the lower bound decays more slowly than <span>\\\\(n^{-\\\\beta _0}\\\\)</span> (<i>n</i> is time), where <span>\\\\(\\\\beta _0\\\\)</span> depends on the transitions of the process, the GERW is transient in the direction of the drift.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-023-01311-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01311-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了广义激发随机游走(GERW)在维度(d\ge 2\)上的一个变体,在这个变体中,激发跳跃的漂移下限是随时间变化的,并且会衰减为零。我们证明,如果下限的衰减速度慢于\(n^{-\beta _0}\)(n是时间),其中\(\beta _0\)取决于过程的转换,那么GERW在漂移方向上就是瞬态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Note on Transience of Generalized Multi-Dimensional Excited Random Walks

分享
查看原文
A Note on Transience of Generalized Multi-Dimensional Excited Random Walks

We consider a variant of the generalized excited random walk (GERW) in dimension \(d\ge 2\) where the lower bound on the drift for excited jumps is time-dependent and decays to zero. We show that if the lower bound decays more slowly than \(n^{-\beta _0}\) (n is time), where \(\beta _0\) depends on the transitions of the process, the GERW is transient in the direction of the drift.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信