反射式高阶微积分:可编码性、可类型性和分离性

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Stian Lybech
{"title":"反射式高阶微积分:可编码性、可类型性和分离性","authors":"Stian Lybech","doi":"10.1016/j.ic.2024.105138","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>ρ</em>-calculus (Reflective Higher-Order Calculus) of Meredith and Radestock is a <em>π</em>-calculus-like language with unusual features, notably, structured names, runtime generation of free names, and the lack of a scoping operator. These features pose interesting difficulties for proofs of encodability, type system soundness and separation results. We describe two errors in a previous attempt to encode the <em>π</em>-calculus in the <em>ρ</em>-calculus by Meredith and Radestock. Then we give a new encoding and prove its correctness, using a set of encodability criteria close to those of Gorla, and discuss the adaptations necessary to work with a calculus with runtime generation of structured names. We create a simple type system for the <em>ρ</em>-calculus to show that the encoding is well-typed, and discuss the limitations that must be imposed when working with structured names. Lastly we prove a separation result, showing that the <em>ρ</em>-calculus cannot be encoded in the <em>π</em>-calculus.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"297 ","pages":"Article 105138"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The reflective higher-order calculus: Encodability, typability and separation\",\"authors\":\"Stian Lybech\",\"doi\":\"10.1016/j.ic.2024.105138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>ρ</em>-calculus (Reflective Higher-Order Calculus) of Meredith and Radestock is a <em>π</em>-calculus-like language with unusual features, notably, structured names, runtime generation of free names, and the lack of a scoping operator. These features pose interesting difficulties for proofs of encodability, type system soundness and separation results. We describe two errors in a previous attempt to encode the <em>π</em>-calculus in the <em>ρ</em>-calculus by Meredith and Radestock. Then we give a new encoding and prove its correctness, using a set of encodability criteria close to those of Gorla, and discuss the adaptations necessary to work with a calculus with runtime generation of structured names. We create a simple type system for the <em>ρ</em>-calculus to show that the encoding is well-typed, and discuss the limitations that must be imposed when working with structured names. Lastly we prove a separation result, showing that the <em>ρ</em>-calculus cannot be encoded in the <em>π</em>-calculus.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"297 \",\"pages\":\"Article 105138\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000038\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000038","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Meredith 和 Radestock 的 ρ 微积分(反射高阶微积分)是一种类似 π 微积分的语言,具有一些不同寻常的特点,特别是结构化名称、运行时生成自由名称,以及缺乏名称可见性范围操作符。这些特点给可编码性、类型系统完备性和分离结果的证明带来了一些有趣的困难。我们描述了 Meredith 和 Radestock 以前发表的尝试用 ρ 计算编码 π 计算中的两个错误。然后,我们给出了一种新的编码,并使用一组与戈拉提出的编码标准相近的标准证明了它的正确性,同时讨论了使用运行时生成结构化名称的微积分所需的调整。我们为 ρ 微积分创建了一个简单的类型系统,以证明编码具有良好的类型,并讨论了在处理结构化名称时必须施加的限制。最后,我们证明了一个分离结果,表明 ρ 算法不能用 π 算法编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The reflective higher-order calculus: Encodability, typability and separation

The ρ-calculus (Reflective Higher-Order Calculus) of Meredith and Radestock is a π-calculus-like language with unusual features, notably, structured names, runtime generation of free names, and the lack of a scoping operator. These features pose interesting difficulties for proofs of encodability, type system soundness and separation results. We describe two errors in a previous attempt to encode the π-calculus in the ρ-calculus by Meredith and Radestock. Then we give a new encoding and prove its correctness, using a set of encodability criteria close to those of Gorla, and discuss the adaptations necessary to work with a calculus with runtime generation of structured names. We create a simple type system for the ρ-calculus to show that the encoding is well-typed, and discuss the limitations that must be imposed when working with structured names. Lastly we prove a separation result, showing that the ρ-calculus cannot be encoded in the π-calculus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信