{"title":"从最简单的偏移集理论得出精确的光环质量函数","authors":"M Sten Delos","doi":"10.1093/mnras/stae141","DOIUrl":null,"url":null,"abstract":"Excursion set theory is a powerful and widely used tool for describing the distribution of dark matter haloes, but it is normally applied with simplifying approximations. We use numerical sampling methods to study the mass functions predicted by the theory without approximations. With a spherical top-hat window and a constant δ = 1.5 threshold, the theory accurately predicts mass functions with the M200 mass definition, both unconditional and conditional, in simulations of a range of matter-dominated cosmologies. For ΛCDM at the present epoch, predictions lie between the M200m and M200c mass functions. In contrast, with the same window function, a nonconstant threshold based on ellipsoidal collapse predicts uniformly too few haloes. This work indicates a new way to simply and accurately evaluate halo mass functions, clustering bias, and assembly histories for a range of cosmologies. We provide a fitting function that accurately represents the predictions of the theory for a wide range of parameters.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"54 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate halo mass functions from the simplest excursion set theory\",\"authors\":\"M Sten Delos\",\"doi\":\"10.1093/mnras/stae141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excursion set theory is a powerful and widely used tool for describing the distribution of dark matter haloes, but it is normally applied with simplifying approximations. We use numerical sampling methods to study the mass functions predicted by the theory without approximations. With a spherical top-hat window and a constant δ = 1.5 threshold, the theory accurately predicts mass functions with the M200 mass definition, both unconditional and conditional, in simulations of a range of matter-dominated cosmologies. For ΛCDM at the present epoch, predictions lie between the M200m and M200c mass functions. In contrast, with the same window function, a nonconstant threshold based on ellipsoidal collapse predicts uniformly too few haloes. This work indicates a new way to simply and accurately evaluate halo mass functions, clustering bias, and assembly histories for a range of cosmologies. We provide a fitting function that accurately represents the predictions of the theory for a wide range of parameters.\",\"PeriodicalId\":18930,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae141\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae141","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Accurate halo mass functions from the simplest excursion set theory
Excursion set theory is a powerful and widely used tool for describing the distribution of dark matter haloes, but it is normally applied with simplifying approximations. We use numerical sampling methods to study the mass functions predicted by the theory without approximations. With a spherical top-hat window and a constant δ = 1.5 threshold, the theory accurately predicts mass functions with the M200 mass definition, both unconditional and conditional, in simulations of a range of matter-dominated cosmologies. For ΛCDM at the present epoch, predictions lie between the M200m and M200c mass functions. In contrast, with the same window function, a nonconstant threshold based on ellipsoidal collapse predicts uniformly too few haloes. This work indicates a new way to simply and accurately evaluate halo mass functions, clustering bias, and assembly histories for a range of cosmologies. We provide a fitting function that accurately represents the predictions of the theory for a wide range of parameters.
期刊介绍:
Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.