C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, H. Li, L. You, L. Parlato, G. P. Pepe
{"title":"利用光子数解析探测器降低预示自发参量下转换源中的 g2(0) 值","authors":"C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, H. Li, L. You, L. Parlato, G. P. Pepe","doi":"10.1063/10.0023887","DOIUrl":null,"url":null,"abstract":"Single Photon Sources (SPSs) play a pivotal role in fields such as quantum communication and quantum cryptography by generating information in a secure manner. However, realizing the ideal emission of single photons with high efficiency is still a theoretical model. This leads to the presence of multiphoton components in SPSs, which could potentially compromise security. This study focuses on enhancing the purity of a class of sources by characterizing their photon number distribution and mitigating the impact of the multiphoton components. We propose the use of Photon Number Resolving Detectors (PNRD) as a technique to exclude multiphoton contributions, particularly in sources like Spontaneous Parametric Down Conversion sources, where emitted photons can be represented as Two-Mode Squeezed Vacuum states. By analyzing the second-order cross-correlation function, g2(0), using either PNRD or Single Photon Detectors, we can quantify the reduction in multiphoton contributions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of g2(0) value in heralded spontaneous parametric down-conversion sources using photon number resolving detectors\",\"authors\":\"C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, H. Li, L. You, L. Parlato, G. P. Pepe\",\"doi\":\"10.1063/10.0023887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single Photon Sources (SPSs) play a pivotal role in fields such as quantum communication and quantum cryptography by generating information in a secure manner. However, realizing the ideal emission of single photons with high efficiency is still a theoretical model. This leads to the presence of multiphoton components in SPSs, which could potentially compromise security. This study focuses on enhancing the purity of a class of sources by characterizing their photon number distribution and mitigating the impact of the multiphoton components. We propose the use of Photon Number Resolving Detectors (PNRD) as a technique to exclude multiphoton contributions, particularly in sources like Spontaneous Parametric Down Conversion sources, where emitted photons can be represented as Two-Mode Squeezed Vacuum states. By analyzing the second-order cross-correlation function, g2(0), using either PNRD or Single Photon Detectors, we can quantify the reduction in multiphoton contributions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0023887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0023887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduction of g2(0) value in heralded spontaneous parametric down-conversion sources using photon number resolving detectors
Single Photon Sources (SPSs) play a pivotal role in fields such as quantum communication and quantum cryptography by generating information in a secure manner. However, realizing the ideal emission of single photons with high efficiency is still a theoretical model. This leads to the presence of multiphoton components in SPSs, which could potentially compromise security. This study focuses on enhancing the purity of a class of sources by characterizing their photon number distribution and mitigating the impact of the multiphoton components. We propose the use of Photon Number Resolving Detectors (PNRD) as a technique to exclude multiphoton contributions, particularly in sources like Spontaneous Parametric Down Conversion sources, where emitted photons can be represented as Two-Mode Squeezed Vacuum states. By analyzing the second-order cross-correlation function, g2(0), using either PNRD or Single Photon Detectors, we can quantify the reduction in multiphoton contributions.