利用光子数解析探测器降低预示自发参量下转换源中的 g2(0) 值

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, APPLIED
C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, H. Li, L. You, L. Parlato, G. P. Pepe
{"title":"利用光子数解析探测器降低预示自发参量下转换源中的 g2(0) 值","authors":"C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, H. Li, L. You, L. Parlato, G. P. Pepe","doi":"10.1063/10.0023887","DOIUrl":null,"url":null,"abstract":"Single Photon Sources (SPSs) play a pivotal role in fields such as quantum communication and quantum cryptography by generating information in a secure manner. However, realizing the ideal emission of single photons with high efficiency is still a theoretical model. This leads to the presence of multiphoton components in SPSs, which could potentially compromise security. This study focuses on enhancing the purity of a class of sources by characterizing their photon number distribution and mitigating the impact of the multiphoton components. We propose the use of Photon Number Resolving Detectors (PNRD) as a technique to exclude multiphoton contributions, particularly in sources like Spontaneous Parametric Down Conversion sources, where emitted photons can be represented as Two-Mode Squeezed Vacuum states. By analyzing the second-order cross-correlation function, g2(0), using either PNRD or Single Photon Detectors, we can quantify the reduction in multiphoton contributions.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of g2(0) value in heralded spontaneous parametric down-conversion sources using photon number resolving detectors\",\"authors\":\"C. Bruscino, M. Ejrnaes, P. Ercolano, D. Salvoni, C. Zhang, H. Li, L. You, L. Parlato, G. P. Pepe\",\"doi\":\"10.1063/10.0023887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single Photon Sources (SPSs) play a pivotal role in fields such as quantum communication and quantum cryptography by generating information in a secure manner. However, realizing the ideal emission of single photons with high efficiency is still a theoretical model. This leads to the presence of multiphoton components in SPSs, which could potentially compromise security. This study focuses on enhancing the purity of a class of sources by characterizing their photon number distribution and mitigating the impact of the multiphoton components. We propose the use of Photon Number Resolving Detectors (PNRD) as a technique to exclude multiphoton contributions, particularly in sources like Spontaneous Parametric Down Conversion sources, where emitted photons can be represented as Two-Mode Squeezed Vacuum states. By analyzing the second-order cross-correlation function, g2(0), using either PNRD or Single Photon Detectors, we can quantify the reduction in multiphoton contributions.\",\"PeriodicalId\":18077,\"journal\":{\"name\":\"Low Temperature Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0023887\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0023887","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

单光子源(SPS)以安全的方式产生信息,在量子通信和量子密码学等领域发挥着举足轻重的作用。然而,实现理想的单光子高效发射仍是一个理论模型。这导致 SPS 中存在多光子成分,有可能危及安全性。本研究的重点是通过表征光子数分布和减轻多光子成分的影响来提高一类光源的纯度。我们建议使用光子数分辨探测器(PNRD)作为一种排除多光子贡献的技术,特别是在自发参量向下转换光源等光源中,发射的光子可以表示为双模挤压真空态。通过使用 PNRD 或单光子探测器分析二阶交叉相关函数 g2(0),我们可以量化多光子贡献的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of g2(0) value in heralded spontaneous parametric down-conversion sources using photon number resolving detectors
Single Photon Sources (SPSs) play a pivotal role in fields such as quantum communication and quantum cryptography by generating information in a secure manner. However, realizing the ideal emission of single photons with high efficiency is still a theoretical model. This leads to the presence of multiphoton components in SPSs, which could potentially compromise security. This study focuses on enhancing the purity of a class of sources by characterizing their photon number distribution and mitigating the impact of the multiphoton components. We propose the use of Photon Number Resolving Detectors (PNRD) as a technique to exclude multiphoton contributions, particularly in sources like Spontaneous Parametric Down Conversion sources, where emitted photons can be represented as Two-Mode Squeezed Vacuum states. By analyzing the second-order cross-correlation function, g2(0), using either PNRD or Single Photon Detectors, we can quantify the reduction in multiphoton contributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Low Temperature Physics
Low Temperature Physics 物理-物理:应用
CiteScore
1.20
自引率
25.00%
发文量
138
审稿时长
3 months
期刊介绍: Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies. Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信