惠特克功能是一种移位微杆

Pub Date : 2024-01-11 DOI:10.1007/s00031-023-09836-x
David Nadler, Jeremy Taylor
{"title":"惠特克功能是一种移位微杆","authors":"David Nadler, Jeremy Taylor","doi":"10.1007/s00031-023-09836-x","DOIUrl":null,"url":null,"abstract":"<p>For a smooth projective curve <i>X</i> and reductive group <i>G</i>, the Whittaker functional on nilpotent sheaves on <span>\\(Bun _G(X)\\)</span> is expected to correspond to global sections of coherent sheaves on the spectral side of Betti geometric Langlands. We prove that the Whittaker functional calculates the shifted microstalk of nilpotent sheaves at the point in the Hitchin moduli where the Kostant section intersects the global nilpotent cone. In particular, the shifted Whittaker functional is exact for the perverse <i>t</i>-structure and commutes with Verdier duality. Our proof is topological and depends on the intrinsic local hyperbolic symmetry of <span>\\(Bun _G(X)\\)</span>. It is an application of a general result relating vanishing cycles to the composition of restriction to an attracting locus followed by vanishing cycles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Whittaker Functional Is a Shifted Microstalk\",\"authors\":\"David Nadler, Jeremy Taylor\",\"doi\":\"10.1007/s00031-023-09836-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a smooth projective curve <i>X</i> and reductive group <i>G</i>, the Whittaker functional on nilpotent sheaves on <span>\\\\(Bun _G(X)\\\\)</span> is expected to correspond to global sections of coherent sheaves on the spectral side of Betti geometric Langlands. We prove that the Whittaker functional calculates the shifted microstalk of nilpotent sheaves at the point in the Hitchin moduli where the Kostant section intersects the global nilpotent cone. In particular, the shifted Whittaker functional is exact for the perverse <i>t</i>-structure and commutes with Verdier duality. Our proof is topological and depends on the intrinsic local hyperbolic symmetry of <span>\\\\(Bun _G(X)\\\\)</span>. It is an application of a general result relating vanishing cycles to the composition of restriction to an attracting locus followed by vanishing cycles.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09836-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09836-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于光滑投影曲线 X 和还原群 G,关于 \(Bun _G(X)\)上零势剪切的惠特克函数有望对应于贝蒂几何朗兰兹谱边上相干剪切的全局截面。我们证明,惠特克函数计算了在希钦模量中科斯坦截面与全局零点锥相交点上的零点剪维的移位微根。特别是,移位惠特克函数对于反t结构是精确的,并且与韦尔迪尔对偶性相乘。我们的证明是拓扑性的,取决于 \(Bun _G(X)\) 的内在局部双曲对称性。它是一个关于消失循环与限制到吸引位置后消失循环的组合的一般结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Whittaker Functional Is a Shifted Microstalk

分享
查看原文
The Whittaker Functional Is a Shifted Microstalk

For a smooth projective curve X and reductive group G, the Whittaker functional on nilpotent sheaves on \(Bun _G(X)\) is expected to correspond to global sections of coherent sheaves on the spectral side of Betti geometric Langlands. We prove that the Whittaker functional calculates the shifted microstalk of nilpotent sheaves at the point in the Hitchin moduli where the Kostant section intersects the global nilpotent cone. In particular, the shifted Whittaker functional is exact for the perverse t-structure and commutes with Verdier duality. Our proof is topological and depends on the intrinsic local hyperbolic symmetry of \(Bun _G(X)\). It is an application of a general result relating vanishing cycles to the composition of restriction to an attracting locus followed by vanishing cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信