{"title":"惠特克功能是一种移位微杆","authors":"David Nadler, Jeremy Taylor","doi":"10.1007/s00031-023-09836-x","DOIUrl":null,"url":null,"abstract":"<p>For a smooth projective curve <i>X</i> and reductive group <i>G</i>, the Whittaker functional on nilpotent sheaves on <span>\\(Bun _G(X)\\)</span> is expected to correspond to global sections of coherent sheaves on the spectral side of Betti geometric Langlands. We prove that the Whittaker functional calculates the shifted microstalk of nilpotent sheaves at the point in the Hitchin moduli where the Kostant section intersects the global nilpotent cone. In particular, the shifted Whittaker functional is exact for the perverse <i>t</i>-structure and commutes with Verdier duality. Our proof is topological and depends on the intrinsic local hyperbolic symmetry of <span>\\(Bun _G(X)\\)</span>. It is an application of a general result relating vanishing cycles to the composition of restriction to an attracting locus followed by vanishing cycles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Whittaker Functional Is a Shifted Microstalk\",\"authors\":\"David Nadler, Jeremy Taylor\",\"doi\":\"10.1007/s00031-023-09836-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a smooth projective curve <i>X</i> and reductive group <i>G</i>, the Whittaker functional on nilpotent sheaves on <span>\\\\(Bun _G(X)\\\\)</span> is expected to correspond to global sections of coherent sheaves on the spectral side of Betti geometric Langlands. We prove that the Whittaker functional calculates the shifted microstalk of nilpotent sheaves at the point in the Hitchin moduli where the Kostant section intersects the global nilpotent cone. In particular, the shifted Whittaker functional is exact for the perverse <i>t</i>-structure and commutes with Verdier duality. Our proof is topological and depends on the intrinsic local hyperbolic symmetry of <span>\\\\(Bun _G(X)\\\\)</span>. It is an application of a general result relating vanishing cycles to the composition of restriction to an attracting locus followed by vanishing cycles.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09836-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09836-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于光滑投影曲线 X 和还原群 G,关于 \(Bun _G(X)\)上零势剪切的惠特克函数有望对应于贝蒂几何朗兰兹谱边上相干剪切的全局截面。我们证明,惠特克函数计算了在希钦模量中科斯坦截面与全局零点锥相交点上的零点剪维的移位微根。特别是,移位惠特克函数对于反t结构是精确的,并且与韦尔迪尔对偶性相乘。我们的证明是拓扑性的,取决于 \(Bun _G(X)\) 的内在局部双曲对称性。它是一个关于消失循环与限制到吸引位置后消失循环的组合的一般结果的应用。
For a smooth projective curve X and reductive group G, the Whittaker functional on nilpotent sheaves on \(Bun _G(X)\) is expected to correspond to global sections of coherent sheaves on the spectral side of Betti geometric Langlands. We prove that the Whittaker functional calculates the shifted microstalk of nilpotent sheaves at the point in the Hitchin moduli where the Kostant section intersects the global nilpotent cone. In particular, the shifted Whittaker functional is exact for the perverse t-structure and commutes with Verdier duality. Our proof is topological and depends on the intrinsic local hyperbolic symmetry of \(Bun _G(X)\). It is an application of a general result relating vanishing cycles to the composition of restriction to an attracting locus followed by vanishing cycles.