夏娃、亚当和依恋树

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Alice Contat, Nicolas Curien, Perrine Lacroix, Etienne Lasalle, Vincent Rivoirard
{"title":"夏娃、亚当和依恋树","authors":"Alice Contat, Nicolas Curien, Perrine Lacroix, Etienne Lasalle, Vincent Rivoirard","doi":"10.1007/s00440-023-01253-1","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of finding the initial vertex (Adam) in a Barabási–Albert tree process <span>\\( (\\mathcal {T}(n): n \\ge 1)\\)</span> at large times. More precisely, given <span>\\( \\varepsilon &gt;0\\)</span>, one wants to output a subset <span>\\( \\mathcal {P}_{ \\varepsilon }(n)\\)</span> of vertices of <span>\\( \\mathcal {T}(n)\\)</span> so that the initial vertex belongs to <span>\\( \\mathcal {P}_ \\varepsilon (n)\\)</span> with probability at least <span>\\(1- \\varepsilon \\)</span> when <i>n</i> is large. It has been shown by Bubeck, Devroye and Lugosi, refined later by Banerjee and Huang, that one needs to output at least <span>\\( \\varepsilon ^{-1 + o(1)}\\)</span> and at most <span>\\(\\varepsilon ^{-2 + o(1)}\\)</span> vertices to succeed. We prove that the exponent in the lower bound is sharp and the key idea is that Adam is either a “large degree\" vertex or is a neighbor of a “large degree\" vertex (Eve).\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eve, Adam and the preferential attachment tree\",\"authors\":\"Alice Contat, Nicolas Curien, Perrine Lacroix, Etienne Lasalle, Vincent Rivoirard\",\"doi\":\"10.1007/s00440-023-01253-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of finding the initial vertex (Adam) in a Barabási–Albert tree process <span>\\\\( (\\\\mathcal {T}(n): n \\\\ge 1)\\\\)</span> at large times. More precisely, given <span>\\\\( \\\\varepsilon &gt;0\\\\)</span>, one wants to output a subset <span>\\\\( \\\\mathcal {P}_{ \\\\varepsilon }(n)\\\\)</span> of vertices of <span>\\\\( \\\\mathcal {T}(n)\\\\)</span> so that the initial vertex belongs to <span>\\\\( \\\\mathcal {P}_ \\\\varepsilon (n)\\\\)</span> with probability at least <span>\\\\(1- \\\\varepsilon \\\\)</span> when <i>n</i> is large. It has been shown by Bubeck, Devroye and Lugosi, refined later by Banerjee and Huang, that one needs to output at least <span>\\\\( \\\\varepsilon ^{-1 + o(1)}\\\\)</span> and at most <span>\\\\(\\\\varepsilon ^{-2 + o(1)}\\\\)</span> vertices to succeed. We prove that the exponent in the lower bound is sharp and the key idea is that Adam is either a “large degree\\\" vertex or is a neighbor of a “large degree\\\" vertex (Eve).\\n</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01253-1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01253-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是在一个巴拉巴西-阿尔伯特树过程中寻找大时间的初始顶点(Adam)((\mathcal {T}(n): n \ge 1)\)。更准确地说,给定 \( (varepsilon >;0\), 我们想要输出一个 \( \mathcal {P}_{ \varepsilon }(n)\) 顶点的子集 \( \mathcal {P}_{ \varepsilon }(n)\),这样当 n 较大时,初始顶点以至少 \(1- \varepsilon \)的概率属于 \( \mathcal {P}_ \varepsilon (n)\) 。Bubeck、Devroye 和 Lugosi 已经证明了这一点,后来 Banerjee 和 Huang 又对其进行了改进,即至少需要输出 \( \varepsilon ^{-1 + o(1)}\) 个顶点,最多需要输出 \(\varepsilon ^{-2 + o(1)}\) 个顶点才能成功。我们证明了下界中的指数是很尖锐的,关键在于亚当要么是一个 "大度 "顶点,要么是一个 "大度 "顶点(夏娃)的邻居。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eve, Adam and the preferential attachment tree

Eve, Adam and the preferential attachment tree

We consider the problem of finding the initial vertex (Adam) in a Barabási–Albert tree process \( (\mathcal {T}(n): n \ge 1)\) at large times. More precisely, given \( \varepsilon >0\), one wants to output a subset \( \mathcal {P}_{ \varepsilon }(n)\) of vertices of \( \mathcal {T}(n)\) so that the initial vertex belongs to \( \mathcal {P}_ \varepsilon (n)\) with probability at least \(1- \varepsilon \) when n is large. It has been shown by Bubeck, Devroye and Lugosi, refined later by Banerjee and Huang, that one needs to output at least \( \varepsilon ^{-1 + o(1)}\) and at most \(\varepsilon ^{-2 + o(1)}\) vertices to succeed. We prove that the exponent in the lower bound is sharp and the key idea is that Adam is either a “large degree" vertex or is a neighbor of a “large degree" vertex (Eve).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信