J. M. Barrios, A. Arboleda, E. Dutra, I. Trigo, F. Gellens-Meulenberghs
{"title":"第二代气象卫星整个运行期内欧洲、非洲和南美洲东部的蒸散和地表能量通量","authors":"J. M. Barrios, A. Arboleda, E. Dutra, I. Trigo, F. Gellens-Meulenberghs","doi":"10.1002/gdj3.235","DOIUrl":null,"url":null,"abstract":"<p>The exchange of energy and water fluxes between the Earth's surface and the atmosphere is crucial to a series of processes that impact human life. Noteworthy examples are agriculture yields, water availability, intensity and extent of droughts and the ability of ecosystems to provide services to society. The relevance of these processes has motivated the Satellite Application Facility on Land Surface Analysis (LSA SAF) programme to set up an operational framework to estimate—among other variables—evapotranspiration (ET) and surface energy fluxes (SEF) on the basis of observations by the Meteosat Second Generation (MSG) satellite. The LSA SAF programme has recently launched the reprocessing of the ET and SEF datasets on the basis of the most recent version of the algorithm and homogenous forcing datasets. This article features the resulting ET/SEF dataset, a Data Record that encompasses the period from the start of the operational life of the MSG satellite (2004) till 2020 and covers the field of view of the MSG satellite (i.e. Europe, Africa and Eastern South America). Details on the algorithm and the datasets driving the ET/SEF estimates are also provided as well as a quality assessment.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.235","citationCount":"0","resultStr":"{\"title\":\"Evapotranspiration and surface energy fluxes across Europe, Africa and Eastern South America throughout the operational life of the Meteosat second generation satellite\",\"authors\":\"J. M. Barrios, A. Arboleda, E. Dutra, I. Trigo, F. Gellens-Meulenberghs\",\"doi\":\"10.1002/gdj3.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exchange of energy and water fluxes between the Earth's surface and the atmosphere is crucial to a series of processes that impact human life. Noteworthy examples are agriculture yields, water availability, intensity and extent of droughts and the ability of ecosystems to provide services to society. The relevance of these processes has motivated the Satellite Application Facility on Land Surface Analysis (LSA SAF) programme to set up an operational framework to estimate—among other variables—evapotranspiration (ET) and surface energy fluxes (SEF) on the basis of observations by the Meteosat Second Generation (MSG) satellite. The LSA SAF programme has recently launched the reprocessing of the ET and SEF datasets on the basis of the most recent version of the algorithm and homogenous forcing datasets. This article features the resulting ET/SEF dataset, a Data Record that encompasses the period from the start of the operational life of the MSG satellite (2004) till 2020 and covers the field of view of the MSG satellite (i.e. Europe, Africa and Eastern South America). Details on the algorithm and the datasets driving the ET/SEF estimates are also provided as well as a quality assessment.</p>\",\"PeriodicalId\":54351,\"journal\":{\"name\":\"Geoscience Data Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.235\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Data Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.235\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.235","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evapotranspiration and surface energy fluxes across Europe, Africa and Eastern South America throughout the operational life of the Meteosat second generation satellite
The exchange of energy and water fluxes between the Earth's surface and the atmosphere is crucial to a series of processes that impact human life. Noteworthy examples are agriculture yields, water availability, intensity and extent of droughts and the ability of ecosystems to provide services to society. The relevance of these processes has motivated the Satellite Application Facility on Land Surface Analysis (LSA SAF) programme to set up an operational framework to estimate—among other variables—evapotranspiration (ET) and surface energy fluxes (SEF) on the basis of observations by the Meteosat Second Generation (MSG) satellite. The LSA SAF programme has recently launched the reprocessing of the ET and SEF datasets on the basis of the most recent version of the algorithm and homogenous forcing datasets. This article features the resulting ET/SEF dataset, a Data Record that encompasses the period from the start of the operational life of the MSG satellite (2004) till 2020 and covers the field of view of the MSG satellite (i.e. Europe, Africa and Eastern South America). Details on the algorithm and the datasets driving the ET/SEF estimates are also provided as well as a quality assessment.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.