{"title":"1 + m 混合流水车间的单批次、批次流水问题","authors":"Sanchit Singh, Subhash C. Sarin, Ming Cheng","doi":"10.1007/s10898-023-01354-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider an application of lot-streaming for processing a lot of multiple items in a hybrid flow shop (HFS) for the objective of minimizing makespan. The HFS that we consider consists of two stages with a single machine available for processing in Stage 1 and <i>m</i> identical parallel machines in Stage 2. We call this problem a 1 + <i>m</i> TSHFS-LSP (two-stage hybrid flow shop, lot streaming problem), and show it to be NP-hard in general, except for the case when the sublot sizes are treated to be continuous. The novelty of our work is in obtaining closed-form expressions for optimal continuous sublot sizes that can be solved in polynomial time, for a given number of sublots. A fast linear search algorithm is also developed for determining the optimal number of sublots for the case of continuous sublot sizes. For the case when the sublot sizes are discrete, we propose a branch-and-bound-based heuristic to determine both the number of sublots and sublot sizes and demonstrate its efficacy by comparing its performance against that of a direct solution of a mixed-integer formulation of the problem by CPLEX<sup>®</sup>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-lot, lot-streaming problem for a 1 + m hybrid flow shop\",\"authors\":\"Sanchit Singh, Subhash C. Sarin, Ming Cheng\",\"doi\":\"10.1007/s10898-023-01354-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider an application of lot-streaming for processing a lot of multiple items in a hybrid flow shop (HFS) for the objective of minimizing makespan. The HFS that we consider consists of two stages with a single machine available for processing in Stage 1 and <i>m</i> identical parallel machines in Stage 2. We call this problem a 1 + <i>m</i> TSHFS-LSP (two-stage hybrid flow shop, lot streaming problem), and show it to be NP-hard in general, except for the case when the sublot sizes are treated to be continuous. The novelty of our work is in obtaining closed-form expressions for optimal continuous sublot sizes that can be solved in polynomial time, for a given number of sublots. A fast linear search algorithm is also developed for determining the optimal number of sublots for the case of continuous sublot sizes. For the case when the sublot sizes are discrete, we propose a branch-and-bound-based heuristic to determine both the number of sublots and sublot sizes and demonstrate its efficacy by comparing its performance against that of a direct solution of a mixed-integer formulation of the problem by CPLEX<sup>®</sup>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-023-01354-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01354-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑在混合流程车间(HFS)中应用批量流来处理包含多个项目的批量,以实现最小生产间隔的目标。我们考虑的 HFS 由两个阶段组成,第一阶段有一台可用于加工的机器,第二阶段有 m 台相同的并行机器。我们把这个问题称为 1 + m TSHFS-LSP(两阶段混合流程车间,批量流问题),并证明它在一般情况下是 NP-困难的,但子批量大小被视为连续的情况除外。我们工作的新颖之处在于获得了最优连续子批量大小的闭式表达式,对于给定数量的子批量,可以在多项式时间内求解。我们还开发了一种快速线性搜索算法,用于确定连续子槽尺寸情况下的最佳子槽数量。对于子槽大小离散的情况,我们提出了一种基于分支和边界的启发式方法来确定子槽数量和子槽大小,并通过比较其性能与 CPLEX® 对问题的混合整数表述的直接求解性能来证明其有效性。
Single-lot, lot-streaming problem for a 1 + m hybrid flow shop
In this paper, we consider an application of lot-streaming for processing a lot of multiple items in a hybrid flow shop (HFS) for the objective of minimizing makespan. The HFS that we consider consists of two stages with a single machine available for processing in Stage 1 and m identical parallel machines in Stage 2. We call this problem a 1 + m TSHFS-LSP (two-stage hybrid flow shop, lot streaming problem), and show it to be NP-hard in general, except for the case when the sublot sizes are treated to be continuous. The novelty of our work is in obtaining closed-form expressions for optimal continuous sublot sizes that can be solved in polynomial time, for a given number of sublots. A fast linear search algorithm is also developed for determining the optimal number of sublots for the case of continuous sublot sizes. For the case when the sublot sizes are discrete, we propose a branch-and-bound-based heuristic to determine both the number of sublots and sublot sizes and demonstrate its efficacy by comparing its performance against that of a direct solution of a mixed-integer formulation of the problem by CPLEX®.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.