{"title":"碳酸盐岩油藏高压扩容注水机理与指标曲线模型","authors":"","doi":"10.1016/j.petlm.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs. With the increase in the number of rounds of water injection, the development effect gradually fails. The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells. Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs, its mechanism remains unclear, and the water injection curve is not apparent. In the past, evaluating its effect could only be done by measuring the injection-production volume. In this study, we analyze the mechanism of high-pressure capacity expansion and water injection. We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs. We propose the following mechanisms: replenishing energy, increasing energy, replacing energy, and releasing energy. The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin. By solving the basic model, the relative errors of Reservoirs I and II are found to be 1.9% and 1.5%, respectively, and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable. This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 3","pages":"Pages 511-519"},"PeriodicalIF":4.2000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656124000075/pdfft?md5=1a1413800d817f0312432c78ba164ec2&pid=1-s2.0-S2405656124000075-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-pressure capacity expansion and water injection mechanism and indicator curve model for fractured-vuggy carbonate reservoirs\",\"authors\":\"\",\"doi\":\"10.1016/j.petlm.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs. With the increase in the number of rounds of water injection, the development effect gradually fails. The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells. Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs, its mechanism remains unclear, and the water injection curve is not apparent. In the past, evaluating its effect could only be done by measuring the injection-production volume. In this study, we analyze the mechanism of high-pressure capacity expansion and water injection. We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs. We propose the following mechanisms: replenishing energy, increasing energy, replacing energy, and releasing energy. The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin. By solving the basic model, the relative errors of Reservoirs I and II are found to be 1.9% and 1.5%, respectively, and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable. This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"10 3\",\"pages\":\"Pages 511-519\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405656124000075/pdfft?md5=1a1413800d817f0312432c78ba164ec2&pid=1-s2.0-S2405656124000075-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656124000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656124000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
High-pressure capacity expansion and water injection mechanism and indicator curve model for fractured-vuggy carbonate reservoirs
Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs. With the increase in the number of rounds of water injection, the development effect gradually fails. The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells. Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs, its mechanism remains unclear, and the water injection curve is not apparent. In the past, evaluating its effect could only be done by measuring the injection-production volume. In this study, we analyze the mechanism of high-pressure capacity expansion and water injection. We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs. We propose the following mechanisms: replenishing energy, increasing energy, replacing energy, and releasing energy. The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin. By solving the basic model, the relative errors of Reservoirs I and II are found to be 1.9% and 1.5%, respectively, and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable. This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing