{"title":"共享电动汽车的基础设施规划和智能充电策略联合模型","authors":"","doi":"10.1016/j.geits.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a data-driven joint model designed to simultaneously deploy and operate infrastructure for shared electric vehicles (SEVs). The model takes into account two prevalent smart charging strategies: the Time-of-Use (TOU) tariff and Vehicle-to-Grid (V2G) technology. We specifically quantify infrastructural demand and simulate the travel and charging behaviors of SEV users, utilizing spatiotemporal and behavioral data extracted from a SEV trajectory dataset. Our findings indicate that the most cost-effective strategy is to deploy slow chargers exclusively at rental stations. For SEV operators, the use of TOU and V2G strategies could potentially reduce charging costs by 17.93% and 34.97% respectively. In the scenarios with V2G applied, the average discharging demand is 2.15 kWh per day per SEV, which accounts for 42.02% of the actual average charging demand of SEVs. These findings are anticipated to provide valuable insights for SEV operators and electricity companies in their infrastructure investment decisions and policy formulation.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"3 4","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773153724000203/pdfft?md5=e126d36b4e1e633af38616e6f348520e&pid=1-s2.0-S2773153724000203-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A joint model of infrastructure planning and smart charging strategies for shared electric vehicles\",\"authors\":\"\",\"doi\":\"10.1016/j.geits.2024.100168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a data-driven joint model designed to simultaneously deploy and operate infrastructure for shared electric vehicles (SEVs). The model takes into account two prevalent smart charging strategies: the Time-of-Use (TOU) tariff and Vehicle-to-Grid (V2G) technology. We specifically quantify infrastructural demand and simulate the travel and charging behaviors of SEV users, utilizing spatiotemporal and behavioral data extracted from a SEV trajectory dataset. Our findings indicate that the most cost-effective strategy is to deploy slow chargers exclusively at rental stations. For SEV operators, the use of TOU and V2G strategies could potentially reduce charging costs by 17.93% and 34.97% respectively. In the scenarios with V2G applied, the average discharging demand is 2.15 kWh per day per SEV, which accounts for 42.02% of the actual average charging demand of SEVs. These findings are anticipated to provide valuable insights for SEV operators and electricity companies in their infrastructure investment decisions and policy formulation.</p></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"3 4\",\"pages\":\"Article 100168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000203/pdfft?md5=e126d36b4e1e633af38616e6f348520e&pid=1-s2.0-S2773153724000203-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一个数据驱动的联合模型,旨在同时部署和运营共享电动汽车(SEV)的基础设施。该模型考虑了两种流行的智能充电策略:使用时间(TOU)关税和车辆到电网(V2G)技术。我们利用从共享电动汽车轨迹数据集中提取的时空数据和行为数据,具体量化了基础设施需求,并模拟了共享电动汽车用户的出行和充电行为。我们的研究结果表明,最具成本效益的策略是专门在租赁站部署慢速充电器。对于 SEV 运营商而言,使用 TOU 和 V2G 策略可分别降低 17.93% 和 34.97% 的充电成本。在应用 V2G 的情况下,每辆 SEV 每天的平均放电需求为 2.15 千瓦时,占 SEV 实际平均充电需求的 42.02%。预计这些研究结果将为东南欧车运营商和电力公司在基础设施投资决策和政策制定方面提供有价值的见解。
A joint model of infrastructure planning and smart charging strategies for shared electric vehicles
This paper presents a data-driven joint model designed to simultaneously deploy and operate infrastructure for shared electric vehicles (SEVs). The model takes into account two prevalent smart charging strategies: the Time-of-Use (TOU) tariff and Vehicle-to-Grid (V2G) technology. We specifically quantify infrastructural demand and simulate the travel and charging behaviors of SEV users, utilizing spatiotemporal and behavioral data extracted from a SEV trajectory dataset. Our findings indicate that the most cost-effective strategy is to deploy slow chargers exclusively at rental stations. For SEV operators, the use of TOU and V2G strategies could potentially reduce charging costs by 17.93% and 34.97% respectively. In the scenarios with V2G applied, the average discharging demand is 2.15 kWh per day per SEV, which accounts for 42.02% of the actual average charging demand of SEVs. These findings are anticipated to provide valuable insights for SEV operators and electricity companies in their infrastructure investment decisions and policy formulation.