风资源不确定性对海上风电场发电量估算的影响评估

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Kerry S. Klemmer, Emily P. Condon, M. Howland
{"title":"风资源不确定性对海上风电场发电量估算的影响评估","authors":"Kerry S. Klemmer, Emily P. Condon, M. Howland","doi":"10.1063/5.0166830","DOIUrl":null,"url":null,"abstract":"Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"33 28","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms\",\"authors\":\"Kerry S. Klemmer, Emily P. Condon, M. Howland\",\"doi\":\"10.1063/5.0166830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\"33 28\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0166830\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0166830","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风电场设计通常依赖于使用历史数据和分析唤醒模型来预测风电场的数量,例如年发电量(AEP)。驱动这些预测的输入风力数据的不确定性可转化为输出量的重大不确定性。我们研究了不确定性的两个来源,分别来自相关气象变量的描述水平和数据来源。前者来自于简化尾流模式中风条件表示的标准做法,例如基于平均湍流强度(TI)而非瞬时湍流强度的 AEP 估计值。数据源的不确定性来自与现场测量成本高有关的实际考虑,尤其是对海上风电场而言。相反,数值天气预报(NWP)建模可用于描述拟议地点的更精确位置,但需要权衡模型形式的不完美。在本研究中,通过对未来 Vineyard Wind 1 海上风电场选址的研究,分析了输入不确定性的两种来源。我们使用距离风电场 25 公里的激光雷达测量数据和风电场内的 NWP 数据对该场址进行了分析。通过使用唤醒分析模型进行前瞻性分析,量化了 TI 和数据源的误差和不确定性。我们发现,TI 误差对 AEP 预测的影响可以忽略不计,而数据源的不确定性会导致海上风电场可行候选轮毂高度的不确定性达到 0.4%-3.7%,这可能会超过年际变化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信