{"title":"风资源不确定性对海上风电场发电量估算的影响评估","authors":"Kerry S. Klemmer, Emily P. Condon, M. Howland","doi":"10.1063/5.0166830","DOIUrl":null,"url":null,"abstract":"Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"33 28","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms\",\"authors\":\"Kerry S. Klemmer, Emily P. Condon, M. Howland\",\"doi\":\"10.1063/5.0166830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\"33 28\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0166830\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0166830","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy