Thomas Harmening, Samir F. Matar, Constanze Fehse, Steffen Klenner, H. Eckert, Jutta Kösters, Wilma Pröbsting, Stefan Seidel, Rainer Pöttgen
{"title":"锗化物 ScTGe2(T = Fe、Co、Ru、Rh)--晶体化学、45Sc 固态核磁共振和 57Fe 莫斯鲍尔谱分析","authors":"Thomas Harmening, Samir F. Matar, Constanze Fehse, Steffen Klenner, H. Eckert, Jutta Kösters, Wilma Pröbsting, Stefan Seidel, Rainer Pöttgen","doi":"10.1515/znb-2023-0068","DOIUrl":null,"url":null,"abstract":"Abstract The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Scδ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆EQ = 0.232(2) mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆EQ = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).","PeriodicalId":23831,"journal":{"name":"Zeitschrift für Naturforschung B","volume":"39 8","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy\",\"authors\":\"Thomas Harmening, Samir F. Matar, Constanze Fehse, Steffen Klenner, H. Eckert, Jutta Kösters, Wilma Pröbsting, Stefan Seidel, Rainer Pöttgen\",\"doi\":\"10.1515/znb-2023-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Scδ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆EQ = 0.232(2) mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆EQ = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).\",\"PeriodicalId\":23831,\"journal\":{\"name\":\"Zeitschrift für Naturforschung B\",\"volume\":\"39 8\",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-2023-0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-2023-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
Abstract The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Scδ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆EQ = 0.232(2) mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆EQ = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).