{"title":"利用空间零膨胀泊松数据绘制疾病分布图的迭代估计方程","authors":"Pei-Sheng Lin, Jun Zhu, Feng‐Chang Lin","doi":"10.1002/sta4.646","DOIUrl":null,"url":null,"abstract":"Spatial epidemiology often involves the analysis of spatial count data with an unusually high proportion of zero observations. While Bayesian hierarchical models perform very well for zero‐inflated data in many situations, a smooth response surface is usually required for the Bayesian methods to converge. However, for infectious disease data with excessive zeros, a Wombling issue with large spatial variation could make the Bayesian methods infeasible. To address this issue, we develop estimating equations associated with disease mapping by including over‐dispersion and spatial noises in a spatial zero‐inflated Poisson model. Asymptotic properties are derived for the parameter estimates. Simulations and data analysis are used to assess and illustrate the proposed method.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"91 25","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative estimating equations for disease mapping with spatial zero‐inflated Poisson data\",\"authors\":\"Pei-Sheng Lin, Jun Zhu, Feng‐Chang Lin\",\"doi\":\"10.1002/sta4.646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial epidemiology often involves the analysis of spatial count data with an unusually high proportion of zero observations. While Bayesian hierarchical models perform very well for zero‐inflated data in many situations, a smooth response surface is usually required for the Bayesian methods to converge. However, for infectious disease data with excessive zeros, a Wombling issue with large spatial variation could make the Bayesian methods infeasible. To address this issue, we develop estimating equations associated with disease mapping by including over‐dispersion and spatial noises in a spatial zero‐inflated Poisson model. Asymptotic properties are derived for the parameter estimates. Simulations and data analysis are used to assess and illustrate the proposed method.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"91 25\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.646\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.646","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Iterative estimating equations for disease mapping with spatial zero‐inflated Poisson data
Spatial epidemiology often involves the analysis of spatial count data with an unusually high proportion of zero observations. While Bayesian hierarchical models perform very well for zero‐inflated data in many situations, a smooth response surface is usually required for the Bayesian methods to converge. However, for infectious disease data with excessive zeros, a Wombling issue with large spatial variation could make the Bayesian methods infeasible. To address this issue, we develop estimating equations associated with disease mapping by including over‐dispersion and spatial noises in a spatial zero‐inflated Poisson model. Asymptotic properties are derived for the parameter estimates. Simulations and data analysis are used to assess and illustrate the proposed method.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.