Yulu Yang , Han Xu , Zhu Jin , Tiecheng Song , Jing Hu , Xiaoqin Song
{"title":"基于 RS-DRL 的 F-MEC 系统卸载策略和无人机轨迹设计","authors":"Yulu Yang , Han Xu , Zhu Jin , Tiecheng Song , Jing Hu , Xiaoqin Song","doi":"10.1016/j.dcan.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>For better flexibility and greater coverage areas, Unmanned Aerial Vehicles (UAVs) have been applied in Flying Mobile Edge Computing (F-MEC) systems to offer offloading services for the User Equipment (UEs). This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices (DRDs). Considering the fairness of DRDs, a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs, the offloading policy and serving time under the constraint of the UAVs' energy capacity. To solve the above non-convex problem, we first model the service process as a Markov Decision Process (MDP) with the Reward Shaping (RS) technique, and then propose a Deep Reinforcement Learning (DRL) based algorithm to find the optimal solution for the MDP. Simulations show that the proposed RS-DRL algorithm is valid and effective, and has better performance than the baseline algorithms.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 377-386"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RS-DRL-based offloading policy and UAV trajectory design in F-MEC systems\",\"authors\":\"Yulu Yang , Han Xu , Zhu Jin , Tiecheng Song , Jing Hu , Xiaoqin Song\",\"doi\":\"10.1016/j.dcan.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For better flexibility and greater coverage areas, Unmanned Aerial Vehicles (UAVs) have been applied in Flying Mobile Edge Computing (F-MEC) systems to offer offloading services for the User Equipment (UEs). This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices (DRDs). Considering the fairness of DRDs, a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs, the offloading policy and serving time under the constraint of the UAVs' energy capacity. To solve the above non-convex problem, we first model the service process as a Markov Decision Process (MDP) with the Reward Shaping (RS) technique, and then propose a Deep Reinforcement Learning (DRL) based algorithm to find the optimal solution for the MDP. Simulations show that the proposed RS-DRL algorithm is valid and effective, and has better performance than the baseline algorithms.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 377-386\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001827\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001827","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
RS-DRL-based offloading policy and UAV trajectory design in F-MEC systems
For better flexibility and greater coverage areas, Unmanned Aerial Vehicles (UAVs) have been applied in Flying Mobile Edge Computing (F-MEC) systems to offer offloading services for the User Equipment (UEs). This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices (DRDs). Considering the fairness of DRDs, a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs, the offloading policy and serving time under the constraint of the UAVs' energy capacity. To solve the above non-convex problem, we first model the service process as a Markov Decision Process (MDP) with the Reward Shaping (RS) technique, and then propose a Deep Reinforcement Learning (DRL) based algorithm to find the optimal solution for the MDP. Simulations show that the proposed RS-DRL algorithm is valid and effective, and has better performance than the baseline algorithms.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.