利用高岭石和回收母液合成生态友好型分层β沸石及其环境影响评估

IF 9.1 Q1 ENGINEERING, CHEMICAL
{"title":"利用高岭石和回收母液合成生态友好型分层β沸石及其环境影响评估","authors":"","doi":"10.1016/j.gce.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>The development of sustainable techniques to produce high-performance zeolite is essential to achieve green production in industry. Herein, we report an eco-friendly route to synthesizing hierarchical Beta zeolite from kaolinite and recycled mother liquor. The results reveal that the unutilized species (such as silicon species and Na<sup>+</sup>) in mother liquor stayed in a stable concentration during eleven recycled experiments. Moreover, the synthesized Beta zeolites still have comparable physicochemical properties and catalytic performance in the esterification of levulinic acid with ethanol over the initial zeolite although eleven recycled experiments. Life cycle assessment exhibits that the synthesis of Beta zeolite with recycled mother liquor can reduce global warming potential by 23% and resource depletion-water use by 36% compared to that without recycled mother liquor. This quantitatively demonstrates that the approach proposed in this work is really a sustainable one, extremely increasing the utilization efficiency of raw materials and decreasing the environmental burden.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"5 4","pages":"Pages 501-510"},"PeriodicalIF":9.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952824000025/pdfft?md5=b996367fb2f78eb1b4471f578847b960&pid=1-s2.0-S2666952824000025-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly synthesis and environmental impact assessment of hierarchical Beta zeolite from kaolinite and recycled mother liquor\",\"authors\":\"\",\"doi\":\"10.1016/j.gce.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of sustainable techniques to produce high-performance zeolite is essential to achieve green production in industry. Herein, we report an eco-friendly route to synthesizing hierarchical Beta zeolite from kaolinite and recycled mother liquor. The results reveal that the unutilized species (such as silicon species and Na<sup>+</sup>) in mother liquor stayed in a stable concentration during eleven recycled experiments. Moreover, the synthesized Beta zeolites still have comparable physicochemical properties and catalytic performance in the esterification of levulinic acid with ethanol over the initial zeolite although eleven recycled experiments. Life cycle assessment exhibits that the synthesis of Beta zeolite with recycled mother liquor can reduce global warming potential by 23% and resource depletion-water use by 36% compared to that without recycled mother liquor. This quantitatively demonstrates that the approach proposed in this work is really a sustainable one, extremely increasing the utilization efficiency of raw materials and decreasing the environmental burden.</p></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":\"5 4\",\"pages\":\"Pages 501-510\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666952824000025/pdfft?md5=b996367fb2f78eb1b4471f578847b960&pid=1-s2.0-S2666952824000025-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952824000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发生产高性能沸石的可持续技术对于实现工业领域的绿色生产至关重要。在此,我们报告了一种利用高岭石和回收母液合成分层 Beta 沸石的生态友好型路线。结果表明,在 11 次循环实验中,母液中未被利用的物质(如硅和 Na+)保持了稳定的浓度。此外,在乙醇酯化乙酰丙酸的过程中,合成的 Beta 沸石与初始沸石相比,在 11 次循环实验中仍具有相当的理化性质和催化性能。生命周期评估表明,与不使用回收母液相比,使用回收母液合成 Beta 沸石可减少 23% 的全球升温潜能值和 36% 的资源损耗-用水量。这从数量上表明,这项工作提出的方法确实是一种可持续的方法,它极大地提高了原材料的利用效率,减轻了环境负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eco-friendly synthesis and environmental impact assessment of hierarchical Beta zeolite from kaolinite and recycled mother liquor

Eco-friendly synthesis and environmental impact assessment of hierarchical Beta zeolite from kaolinite and recycled mother liquor

The development of sustainable techniques to produce high-performance zeolite is essential to achieve green production in industry. Herein, we report an eco-friendly route to synthesizing hierarchical Beta zeolite from kaolinite and recycled mother liquor. The results reveal that the unutilized species (such as silicon species and Na+) in mother liquor stayed in a stable concentration during eleven recycled experiments. Moreover, the synthesized Beta zeolites still have comparable physicochemical properties and catalytic performance in the esterification of levulinic acid with ethanol over the initial zeolite although eleven recycled experiments. Life cycle assessment exhibits that the synthesis of Beta zeolite with recycled mother liquor can reduce global warming potential by 23% and resource depletion-water use by 36% compared to that without recycled mother liquor. This quantitatively demonstrates that the approach proposed in this work is really a sustainable one, extremely increasing the utilization efficiency of raw materials and decreasing the environmental burden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信