J. Pérez-Ortega, Carlos Fernando Moreno-Calderón, Sandra Silvia Roblero-Aguilar, N. N. Almanza-Ortega, J. Frausto-Solís, Rodolfo Pazos-Rangel, J. M. Rodríguez-Lelis
{"title":"提高模糊 C-Means 聚类收敛性的新标准","authors":"J. Pérez-Ortega, Carlos Fernando Moreno-Calderón, Sandra Silvia Roblero-Aguilar, N. N. Almanza-Ortega, J. Frausto-Solís, Rodolfo Pazos-Rangel, J. M. Rodríguez-Lelis","doi":"10.3390/axioms13010035","DOIUrl":null,"url":null,"abstract":"One of the most used algorithms to solve the fuzzy clustering problem is Fuzzy C-Means; however, one of its main limitations is its high computational complexity. It is known that the efficiency of an algorithm depends, among other factors, on the strategies for its initialization and convergence. In this research, a new convergence strategy is proposed, which is based on the difference of the objective function values, in two consecutive iterations, expressed as a percentage of its value in the next to the last one. Additionally, a new method is proposed to optimize the selection of values of the convergence or stop threshold of the algorithm, which is based on the Pareto principle. To validate our approach, a collection of real datasets was solved, and a significant reduction in the number of iterations was observed, without affecting significantly the solution quality. Based on the proposed method and the experiments carried out, we found it is convenient to use threshold values equal to 0.73 and 0.35 if a decrease in the number of iterations of approximately 75.2% and 64.56%, respectively, is wanted, at the expense of a reduction in solution quality of 2% and 1%, respectively. It is worth mentioning that, as the size of the datasets is increased, the proposed approach tends to obtain better results, and therefore, its use is suggested for datasets found in Big Data and Data Science.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"135 45","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Criterion for Improving Convergence of Fuzzy C-Means Clustering\",\"authors\":\"J. Pérez-Ortega, Carlos Fernando Moreno-Calderón, Sandra Silvia Roblero-Aguilar, N. N. Almanza-Ortega, J. Frausto-Solís, Rodolfo Pazos-Rangel, J. M. Rodríguez-Lelis\",\"doi\":\"10.3390/axioms13010035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most used algorithms to solve the fuzzy clustering problem is Fuzzy C-Means; however, one of its main limitations is its high computational complexity. It is known that the efficiency of an algorithm depends, among other factors, on the strategies for its initialization and convergence. In this research, a new convergence strategy is proposed, which is based on the difference of the objective function values, in two consecutive iterations, expressed as a percentage of its value in the next to the last one. Additionally, a new method is proposed to optimize the selection of values of the convergence or stop threshold of the algorithm, which is based on the Pareto principle. To validate our approach, a collection of real datasets was solved, and a significant reduction in the number of iterations was observed, without affecting significantly the solution quality. Based on the proposed method and the experiments carried out, we found it is convenient to use threshold values equal to 0.73 and 0.35 if a decrease in the number of iterations of approximately 75.2% and 64.56%, respectively, is wanted, at the expense of a reduction in solution quality of 2% and 1%, respectively. It is worth mentioning that, as the size of the datasets is increased, the proposed approach tends to obtain better results, and therefore, its use is suggested for datasets found in Big Data and Data Science.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"135 45\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13010035\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13010035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A New Criterion for Improving Convergence of Fuzzy C-Means Clustering
One of the most used algorithms to solve the fuzzy clustering problem is Fuzzy C-Means; however, one of its main limitations is its high computational complexity. It is known that the efficiency of an algorithm depends, among other factors, on the strategies for its initialization and convergence. In this research, a new convergence strategy is proposed, which is based on the difference of the objective function values, in two consecutive iterations, expressed as a percentage of its value in the next to the last one. Additionally, a new method is proposed to optimize the selection of values of the convergence or stop threshold of the algorithm, which is based on the Pareto principle. To validate our approach, a collection of real datasets was solved, and a significant reduction in the number of iterations was observed, without affecting significantly the solution quality. Based on the proposed method and the experiments carried out, we found it is convenient to use threshold values equal to 0.73 and 0.35 if a decrease in the number of iterations of approximately 75.2% and 64.56%, respectively, is wanted, at the expense of a reduction in solution quality of 2% and 1%, respectively. It is worth mentioning that, as the size of the datasets is increased, the proposed approach tends to obtain better results, and therefore, its use is suggested for datasets found in Big Data and Data Science.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.