基于 Cosserat 弹性理论的纤维增强固体模型中的准凸性

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Shirani, Mircea Bîrsan, D. Steigmann
{"title":"基于 Cosserat 弹性理论的纤维增强固体模型中的准凸性","authors":"M. Shirani, Mircea Bîrsan, D. Steigmann","doi":"10.1177/10812865231217640","DOIUrl":null,"url":null,"abstract":"The quasiconvexity inequality associated with energy minimizers is derived in the context of a nonlinear Cosserat elasticity theory for fiber-reinforced elastic solids in which the intrinsic flexural and torsional elasticities of the fibers are taken into account explicitly. The derivation accounts for non-standard kinematic constraints, associated with the materiality of the embedded fibers, connecting the deformation gradient and the Cosserat rotation field.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"142 24","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasiconvexity in a model of fiber-reinforced solids based on Cosserat elasticity theory\",\"authors\":\"M. Shirani, Mircea Bîrsan, D. Steigmann\",\"doi\":\"10.1177/10812865231217640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quasiconvexity inequality associated with energy minimizers is derived in the context of a nonlinear Cosserat elasticity theory for fiber-reinforced elastic solids in which the intrinsic flexural and torsional elasticities of the fibers are taken into account explicitly. The derivation accounts for non-standard kinematic constraints, associated with the materiality of the embedded fibers, connecting the deformation gradient and the Cosserat rotation field.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"142 24\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231217640\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231217640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与能量最小化相关的准凸不等式是在纤维增强弹性固体的非线性 Cosserat 弹性理论背景下推导出来的,其中明确考虑了纤维的内在弯曲和扭转弹性。该推导考虑了与嵌入纤维的材料性相关的非标准运动学约束,将变形梯度和 Cosserat 旋转场联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasiconvexity in a model of fiber-reinforced solids based on Cosserat elasticity theory
The quasiconvexity inequality associated with energy minimizers is derived in the context of a nonlinear Cosserat elasticity theory for fiber-reinforced elastic solids in which the intrinsic flexural and torsional elasticities of the fibers are taken into account explicitly. The derivation accounts for non-standard kinematic constraints, associated with the materiality of the embedded fibers, connecting the deformation gradient and the Cosserat rotation field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信