高斯分布线性和非线性变换理论中的 Wick-Fourier-Hermite 系列

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
E. Chernousova, S. Molchanov, A. Shiryaev
{"title":"高斯分布线性和非线性变换理论中的 Wick-Fourier-Hermite 系列","authors":"E. Chernousova, S. Molchanov, A. Shiryaev","doi":"10.61102/1024-2953-mprf.2023.29.4.001","DOIUrl":null,"url":null,"abstract":"This article provides information on Hermite polynomials and its application to some problems in risk theory and site percolation.","PeriodicalId":48890,"journal":{"name":"Markov Processes and Related Fields","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wick–Fourier–Hermite Series in the Theory of Linear and Nonlinear Transformations of Gaussian Distributions\",\"authors\":\"E. Chernousova, S. Molchanov, A. Shiryaev\",\"doi\":\"10.61102/1024-2953-mprf.2023.29.4.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides information on Hermite polynomials and its application to some problems in risk theory and site percolation.\",\"PeriodicalId\":48890,\"journal\":{\"name\":\"Markov Processes and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Markov Processes and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.61102/1024-2953-mprf.2023.29.4.001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Markov Processes and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61102/1024-2953-mprf.2023.29.4.001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍赫米特多项式及其在风险理论和站点渗流中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wick–Fourier–Hermite Series in the Theory of Linear and Nonlinear Transformations of Gaussian Distributions
This article provides information on Hermite polynomials and its application to some problems in risk theory and site percolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Markov Processes and Related Fields
Markov Processes and Related Fields STATISTICS & PROBABILITY-
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: Markov Processes And Related Fields The Journal focuses on mathematical modelling of today''s enormous wealth of problems from modern technology, like artificial intelligence, large scale networks, data bases, parallel simulation, computer architectures, etc. Research papers, reviews, tutorial papers and additionally short explanations of new applied fields and new mathematical problems in the above fields are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信