{"title":"用于往复式机械故障特征提取的改进型轻量级联合学习网络","authors":"Junling Zhang, Lixiang Duan, Ke Li, Shilong Luo","doi":"10.1088/1361-6501/ad1a69","DOIUrl":null,"url":null,"abstract":"\n he working environment of reciprocating machinery is complex, characterized by nonlinear and non-stationary signals. Deep learning can solve the above problems, but it has its own problems such as complex model and large amount of parameters. Additionally, privacy considerations among enterprises prevent data sharing, leading to the emergence of \"data islands\" and inadequate training of deep learning models. Based on the above analysis, this paper proposes a reciprocating mechanical feature extraction method based on an improved federated lightweight network. A lightweight network SqueezeNet model is used to solve the problems such as long training time of deep learning. By establishing a federated learning framework, the reciprocating mechanical data can be collectively diagnosed across various enterprises, thereby addressing the problem of limited model training caused by insufficient data. Furthermore, to enhance the accuracy of network training and diagnosis, modifications are made to the SqueezeNet network to reduce the number of model parameters while increasing the number and variety of feature extractions. Experimental results demonstrate that when the number of 1×1 and 3×3 channels is 1 to 7, the fault diagnosis accuracy is the highest, about 97.96%, which enriches the categories of feature extraction. The number of parameters in In-SqueezeNet is 56% of that in SqueezeNet network model, and the training time is reduced by nearly 15%. The fault diagnosis accuracy is increased from 95.1% to 97.3%, and the diversity of extracted features is increased. Compared with other network models such as ResNet, the improved lightweight federated learning network has a fault diagnosis accuracy of 96.6%, an improvement of 10.6%. At the same time, the training time was reduced to 1982s, a reduction of about 41.5%. The validity of the proposed model is further verified.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"44 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved lightweight federated learning network for fault feature extraction of reciprocating machinery\",\"authors\":\"Junling Zhang, Lixiang Duan, Ke Li, Shilong Luo\",\"doi\":\"10.1088/1361-6501/ad1a69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n he working environment of reciprocating machinery is complex, characterized by nonlinear and non-stationary signals. Deep learning can solve the above problems, but it has its own problems such as complex model and large amount of parameters. Additionally, privacy considerations among enterprises prevent data sharing, leading to the emergence of \\\"data islands\\\" and inadequate training of deep learning models. Based on the above analysis, this paper proposes a reciprocating mechanical feature extraction method based on an improved federated lightweight network. A lightweight network SqueezeNet model is used to solve the problems such as long training time of deep learning. By establishing a federated learning framework, the reciprocating mechanical data can be collectively diagnosed across various enterprises, thereby addressing the problem of limited model training caused by insufficient data. Furthermore, to enhance the accuracy of network training and diagnosis, modifications are made to the SqueezeNet network to reduce the number of model parameters while increasing the number and variety of feature extractions. Experimental results demonstrate that when the number of 1×1 and 3×3 channels is 1 to 7, the fault diagnosis accuracy is the highest, about 97.96%, which enriches the categories of feature extraction. The number of parameters in In-SqueezeNet is 56% of that in SqueezeNet network model, and the training time is reduced by nearly 15%. The fault diagnosis accuracy is increased from 95.1% to 97.3%, and the diversity of extracted features is increased. Compared with other network models such as ResNet, the improved lightweight federated learning network has a fault diagnosis accuracy of 96.6%, an improvement of 10.6%. At the same time, the training time was reduced to 1982s, a reduction of about 41.5%. The validity of the proposed model is further verified.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"44 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1a69\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1a69","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Improved lightweight federated learning network for fault feature extraction of reciprocating machinery
he working environment of reciprocating machinery is complex, characterized by nonlinear and non-stationary signals. Deep learning can solve the above problems, but it has its own problems such as complex model and large amount of parameters. Additionally, privacy considerations among enterprises prevent data sharing, leading to the emergence of "data islands" and inadequate training of deep learning models. Based on the above analysis, this paper proposes a reciprocating mechanical feature extraction method based on an improved federated lightweight network. A lightweight network SqueezeNet model is used to solve the problems such as long training time of deep learning. By establishing a federated learning framework, the reciprocating mechanical data can be collectively diagnosed across various enterprises, thereby addressing the problem of limited model training caused by insufficient data. Furthermore, to enhance the accuracy of network training and diagnosis, modifications are made to the SqueezeNet network to reduce the number of model parameters while increasing the number and variety of feature extractions. Experimental results demonstrate that when the number of 1×1 and 3×3 channels is 1 to 7, the fault diagnosis accuracy is the highest, about 97.96%, which enriches the categories of feature extraction. The number of parameters in In-SqueezeNet is 56% of that in SqueezeNet network model, and the training time is reduced by nearly 15%. The fault diagnosis accuracy is increased from 95.1% to 97.3%, and the diversity of extracted features is increased. Compared with other network models such as ResNet, the improved lightweight federated learning network has a fault diagnosis accuracy of 96.6%, an improvement of 10.6%. At the same time, the training time was reduced to 1982s, a reduction of about 41.5%. The validity of the proposed model is further verified.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.