伊托-莱维环境下具有通胀风险和随机收入的最优投资-消费-保险策略

IF 0.6 Q4 BUSINESS, FINANCE
Gaoganwe S. Moagi, Obonye Doctor
{"title":"伊托-莱维环境下具有通胀风险和随机收入的最优投资-消费-保险策略","authors":"Gaoganwe S. Moagi, Obonye Doctor","doi":"10.1142/s2424786323500548","DOIUrl":null,"url":null,"abstract":"This paper’s focus is on finding the optimal strategies for a trader who invests in stock, a money market account and an inflation-linked index bond. The stock follows a jump diffusion process and the bond is linked to inflation making the two risky. The optimal strategies are determined on two generations of the life of an investor, that is before the investor dies and after the investor dies. We applied the concept of change of probability measures considering Girsanov’s and the Radon–Nikodym theorems. We found the generator of the Backward Stochastic differential equations defined and employed the Hamilton–Jacobi–Bellman (HJB) dynamic programming in finding the stochastic optimal controls of interest.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":"15 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal investment–consumption–insurance strategy with inflation risk and stochastic income in an Itô–Lévy setting\",\"authors\":\"Gaoganwe S. Moagi, Obonye Doctor\",\"doi\":\"10.1142/s2424786323500548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper’s focus is on finding the optimal strategies for a trader who invests in stock, a money market account and an inflation-linked index bond. The stock follows a jump diffusion process and the bond is linked to inflation making the two risky. The optimal strategies are determined on two generations of the life of an investor, that is before the investor dies and after the investor dies. We applied the concept of change of probability measures considering Girsanov’s and the Radon–Nikodym theorems. We found the generator of the Backward Stochastic differential equations defined and employed the Hamilton–Jacobi–Bellman (HJB) dynamic programming in finding the stochastic optimal controls of interest.\",\"PeriodicalId\":54088,\"journal\":{\"name\":\"International Journal of Financial Engineering\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Financial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424786323500548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786323500548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是为投资股票、货币市场账户和通胀挂钩指数债券的交易者寻找最优策略。股票遵循跳跃扩散过程,债券与通货膨胀挂钩,因此两者都有风险。最优策略取决于投资者一生中的两代人,即投资者去世前和去世后。考虑到吉尔萨诺夫定理和拉顿-尼科杰姆定理,我们应用了概率度量变化的概念。我们找到了所定义的后向随机微分方程的生成器,并采用汉密尔顿-雅各比-贝尔曼(HJB)动态编程法找到了相关的随机最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal investment–consumption–insurance strategy with inflation risk and stochastic income in an Itô–Lévy setting
This paper’s focus is on finding the optimal strategies for a trader who invests in stock, a money market account and an inflation-linked index bond. The stock follows a jump diffusion process and the bond is linked to inflation making the two risky. The optimal strategies are determined on two generations of the life of an investor, that is before the investor dies and after the investor dies. We applied the concept of change of probability measures considering Girsanov’s and the Radon–Nikodym theorems. We found the generator of the Backward Stochastic differential equations defined and employed the Hamilton–Jacobi–Bellman (HJB) dynamic programming in finding the stochastic optimal controls of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信