Dagma-DCE:可解释的非参数差异因果发现

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Daniel Waxman;Kurt Butler;Petar M. Djurić
{"title":"Dagma-DCE:可解释的非参数差异因果发现","authors":"Daniel Waxman;Kurt Butler;Petar M. Djurić","doi":"10.1109/OJSP.2024.3351593","DOIUrl":null,"url":null,"abstract":"We introduce \n<sc>Dagma-DCE</small>\n, an interpretable and model-agnostic scheme for differentiable causal discovery. Current non- or over-parametric methods in differentiable causal discovery use opaque proxies of “independence” to justify the inclusion or exclusion of a causal relationship. We show theoretically and empirically that these proxies may be arbitrarily different than the actual causal strength. Juxtaposed with existing differentiable causal discovery algorithms, \n<sc>Dagma-DCE</small>\n uses an interpretable measure of causal strength to define weighted adjacency matrices. In a number of simulated datasets, we show our method achieves state-of-the-art level performance. We additionally show that \n<sc>Dagma-DCE</small>\n allows for principled thresholding and sparsity penalties by domain-experts. The code for our method is available open-source at \n<uri>https://github.com/DanWaxman/DAGMA-DCE</uri>\n, and can easily be adapted to arbitrary differentiable models.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"393-401"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10384714","citationCount":"0","resultStr":"{\"title\":\"Dagma-DCE: Interpretable, Non-Parametric Differentiable Causal Discovery\",\"authors\":\"Daniel Waxman;Kurt Butler;Petar M. Djurić\",\"doi\":\"10.1109/OJSP.2024.3351593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce \\n<sc>Dagma-DCE</small>\\n, an interpretable and model-agnostic scheme for differentiable causal discovery. Current non- or over-parametric methods in differentiable causal discovery use opaque proxies of “independence” to justify the inclusion or exclusion of a causal relationship. We show theoretically and empirically that these proxies may be arbitrarily different than the actual causal strength. Juxtaposed with existing differentiable causal discovery algorithms, \\n<sc>Dagma-DCE</small>\\n uses an interpretable measure of causal strength to define weighted adjacency matrices. In a number of simulated datasets, we show our method achieves state-of-the-art level performance. We additionally show that \\n<sc>Dagma-DCE</small>\\n allows for principled thresholding and sparsity penalties by domain-experts. The code for our method is available open-source at \\n<uri>https://github.com/DanWaxman/DAGMA-DCE</uri>\\n, and can easily be adapted to arbitrary differentiable models.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"393-401\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10384714\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10384714/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10384714/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了 Dagma-DCE,这是一种可解释且与模型无关的可微分因果发现方案。当前可微分因果发现中的非参数或超参数方法使用不透明的 "独立性 "代理来证明因果关系的包含或排除。我们从理论和经验上证明,这些代理可能与实际的因果关系强度存在任意差异。与现有的可微分因果关系发现算法相比,textsc{Dagma-DCE}使用可解释的因果关系强度度量来定义加权邻接矩阵。在一些模拟数据集中,我们展示了我们的方法达到了最先进水平的性能。此外,我们还证明了\textsc{Dagma-DCE}允许领域专家进行有原则的阈值和稀疏性惩罚。我们的方法代码开源于 https://github.com/DanWaxman/DAGMA-DCE,可轻松适用于任意可微模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dagma-DCE: Interpretable, Non-Parametric Differentiable Causal Discovery
We introduce Dagma-DCE , an interpretable and model-agnostic scheme for differentiable causal discovery. Current non- or over-parametric methods in differentiable causal discovery use opaque proxies of “independence” to justify the inclusion or exclusion of a causal relationship. We show theoretically and empirically that these proxies may be arbitrarily different than the actual causal strength. Juxtaposed with existing differentiable causal discovery algorithms, Dagma-DCE uses an interpretable measure of causal strength to define weighted adjacency matrices. In a number of simulated datasets, we show our method achieves state-of-the-art level performance. We additionally show that Dagma-DCE allows for principled thresholding and sparsity penalties by domain-experts. The code for our method is available open-source at https://github.com/DanWaxman/DAGMA-DCE , and can easily be adapted to arbitrary differentiable models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信