用 VOSO4 作为中介促进具有高单体容量的电解 MnO2-Zn 电池的可逆性

Yong Xu, Wenjie Huang, Jun Liu, R. Hu, L. Ouyang, Lichun Yang, Mindan Zhu
{"title":"用 VOSO4 作为中介促进具有高单体容量的电解 MnO2-Zn 电池的可逆性","authors":"Yong Xu, Wenjie Huang, Jun Liu, R. Hu, L. Ouyang, Lichun Yang, Mindan Zhu","doi":"10.20517/energymater.2023.73","DOIUrl":null,"url":null,"abstract":"Electrolytic MnO2-Zn batteries possess high energy density due to the high reduction potential and capacity of the cathode Mn2+/MnO2. However, the low reversibility of the Mn2+/MnO2 conversion results in a limited lifespan. In this study, we propose the utilization of VOSO4 as a redox mediator in the MnO2-Zn battery to facilitate the dissolution of MnO2. Through various techniques such as electrochemical measurements, ex-situ UV-visible spectroscopy, X-ray diffraction, and scanning electron microscopes, we validate the interaction between VO2+ and MnO2, which effectively mitigates the accumulation of MnO2. The introduction of the redox mediator results in exceptional redox reversibility and outstanding cycling stability of the MnO2/VOSO4-Zn battery at high areal capacities, with 900 cycles at 5 mAh cm-2 and 500 cycles at 10 mAh cm-2. Notably, even in the flow battery device, the battery exhibits a stable cycling performance over 300 cycles at 20 mAh cm-2. These research findings shed light on the potential large-scale application of electrolytic MnO2-Zn batteries.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"48 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting the reversibility of electrolytic MnO2-Zn battery with high areal capacity by VOSO4 mediator\",\"authors\":\"Yong Xu, Wenjie Huang, Jun Liu, R. Hu, L. Ouyang, Lichun Yang, Mindan Zhu\",\"doi\":\"10.20517/energymater.2023.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrolytic MnO2-Zn batteries possess high energy density due to the high reduction potential and capacity of the cathode Mn2+/MnO2. However, the low reversibility of the Mn2+/MnO2 conversion results in a limited lifespan. In this study, we propose the utilization of VOSO4 as a redox mediator in the MnO2-Zn battery to facilitate the dissolution of MnO2. Through various techniques such as electrochemical measurements, ex-situ UV-visible spectroscopy, X-ray diffraction, and scanning electron microscopes, we validate the interaction between VO2+ and MnO2, which effectively mitigates the accumulation of MnO2. The introduction of the redox mediator results in exceptional redox reversibility and outstanding cycling stability of the MnO2/VOSO4-Zn battery at high areal capacities, with 900 cycles at 5 mAh cm-2 and 500 cycles at 10 mAh cm-2. Notably, even in the flow battery device, the battery exhibits a stable cycling performance over 300 cycles at 20 mAh cm-2. These research findings shed light on the potential large-scale application of electrolytic MnO2-Zn batteries.\",\"PeriodicalId\":516139,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\"48 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于阴极 Mn2+/MnO2 的高还原电位和容量,电解 MnO2-Zn 电池具有高能量密度。然而,Mn2+/MnO2 转换的可逆性较低,导致其寿命有限。在本研究中,我们提出在 MnO2-Zn 电池中利用 VOSO4 作为氧化还原介质,以促进 MnO2 的溶解。通过电化学测量、原位紫外可见光谱、X 射线衍射和扫描电子显微镜等多种技术,我们验证了 VO2+ 与 MnO2 之间的相互作用,从而有效缓解了 MnO2 的积累。氧化还原介质的引入使 MnO2/VOSO4-Zn 电池在高倍率容量下具有卓越的氧化还原可逆性和出色的循环稳定性,在 5 mAh cm-2 的条件下可循环 900 次,在 10 mAh cm-2 的条件下可循环 500 次。值得注意的是,即使在液流电池装置中,电池在 20 mAh cm-2 的条件下也能稳定循环 300 次以上。这些研究成果为电解 MnO2-Zn 电池的大规模应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promoting the reversibility of electrolytic MnO2-Zn battery with high areal capacity by VOSO4 mediator
Electrolytic MnO2-Zn batteries possess high energy density due to the high reduction potential and capacity of the cathode Mn2+/MnO2. However, the low reversibility of the Mn2+/MnO2 conversion results in a limited lifespan. In this study, we propose the utilization of VOSO4 as a redox mediator in the MnO2-Zn battery to facilitate the dissolution of MnO2. Through various techniques such as electrochemical measurements, ex-situ UV-visible spectroscopy, X-ray diffraction, and scanning electron microscopes, we validate the interaction between VO2+ and MnO2, which effectively mitigates the accumulation of MnO2. The introduction of the redox mediator results in exceptional redox reversibility and outstanding cycling stability of the MnO2/VOSO4-Zn battery at high areal capacities, with 900 cycles at 5 mAh cm-2 and 500 cycles at 10 mAh cm-2. Notably, even in the flow battery device, the battery exhibits a stable cycling performance over 300 cycles at 20 mAh cm-2. These research findings shed light on the potential large-scale application of electrolytic MnO2-Zn batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信