BCK 序列的谢弗行程分支

Tugce Kati̇can
{"title":"BCK 序列的谢弗行程分支","authors":"Tugce Kati̇can","doi":"10.25092/baunfbed.1293529","DOIUrl":null,"url":null,"abstract":"The main objective of the study is to introduce branches of Sheffer stroke BCK-algebras due their specific elements. At the onset of the study, an atom of a Sheffer stroke BCK-algebra is defined and it is shown that the set of all atoms of the algebraic structure is its subalgebra. Then it is proved that specified subsets defined by atoms of a Sheffer stroke BCK-algebra are ideals but the inverses are not true in general. Moreover, a branch and a chain on a Sheffer stroke BCK-algebra are introduced and some properties are presented. Finally, relationships between aforementioned concepts are built and supported by illustrative examples.","PeriodicalId":486927,"journal":{"name":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","volume":"54 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCK-cebirlerinin Sheffer stroke dallanması\",\"authors\":\"Tugce Kati̇can\",\"doi\":\"10.25092/baunfbed.1293529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of the study is to introduce branches of Sheffer stroke BCK-algebras due their specific elements. At the onset of the study, an atom of a Sheffer stroke BCK-algebra is defined and it is shown that the set of all atoms of the algebraic structure is its subalgebra. Then it is proved that specified subsets defined by atoms of a Sheffer stroke BCK-algebra are ideals but the inverses are not true in general. Moreover, a branch and a chain on a Sheffer stroke BCK-algebra are introduced and some properties are presented. Finally, relationships between aforementioned concepts are built and supported by illustrative examples.\",\"PeriodicalId\":486927,\"journal\":{\"name\":\"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi\",\"volume\":\"54 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.25092/baunfbed.1293529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.25092/baunfbed.1293529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是介绍谢弗划线 BCK 代数的分支及其特定元素。研究伊始,首先定义 Sheffer 冲程 BCK 代数的原子,并证明代数结构的所有原子集合是其子代数。然后证明谢弗行程 BCK 代数的原子定义的指定子集是理想,但一般情况下反义词不成立。此外,还引入了 Sheffer 笔画 BCK-algebra 上的分支和链,并给出了一些性质。最后,建立了上述概念之间的关系,并通过实例加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BCK-cebirlerinin Sheffer stroke dallanması
The main objective of the study is to introduce branches of Sheffer stroke BCK-algebras due their specific elements. At the onset of the study, an atom of a Sheffer stroke BCK-algebra is defined and it is shown that the set of all atoms of the algebraic structure is its subalgebra. Then it is proved that specified subsets defined by atoms of a Sheffer stroke BCK-algebra are ideals but the inverses are not true in general. Moreover, a branch and a chain on a Sheffer stroke BCK-algebra are introduced and some properties are presented. Finally, relationships between aforementioned concepts are built and supported by illustrative examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信