凸与非凸惩罚回归方法的比较研究

Murat Genç
{"title":"凸与非凸惩罚回归方法的比较研究","authors":"Murat Genç","doi":"10.25092/baunfbed.1299583","DOIUrl":null,"url":null,"abstract":"Doğrusal regresyonda cezalı regresyon yöntemleri veri kümesinin yapısına bağlı olarak ön tahminde daha doğru sonuçlar elde edilmesi için kullanılır. Ayrıca cezalı regresyon yöntemleri kullanılarak yanıt değişken ile ilişkili olan açıklayıcı değişkenlerin tespiti mümkündür. Bu çalışmada ridge, LASSO, elastik net, uyarlamalı LASSO konveks cezalı regresyon yöntemleri ile SCAD ve MCP konveks olmayan cezalı regresyon yöntemlerinin gerçek katsayı vektörünün özelliklerine bağlı olarak performansları simülasyon çalışmaları ile karşılaştırılmıştır. Yöntemlere dayalı olarak oluşturulan modellerin ön tahmin performansının karşılaştırılması için test kümesi hata kareler ortalaması kullanılırken yöntemlerin değişken seçimindeki performanslarının karşılaştırılması için yanlış sınıflama oranı, yanlış pozitif oranı ve aktif küme büyüklükleri elde edilmiştir. Simülasyon çalışmalarına göre gerçek katsayı vektörünün yapısının konveks ve konveks olmayan cezalı regresyon yöntemleri ile oluşturulan modellerin performansı üzerinde kayda değer bir etkisinin olduğu görülmüştür.","PeriodicalId":486927,"journal":{"name":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","volume":"57 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on comparison of convex and non-convex penalized regression methods\",\"authors\":\"Murat Genç\",\"doi\":\"10.25092/baunfbed.1299583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Doğrusal regresyonda cezalı regresyon yöntemleri veri kümesinin yapısına bağlı olarak ön tahminde daha doğru sonuçlar elde edilmesi için kullanılır. Ayrıca cezalı regresyon yöntemleri kullanılarak yanıt değişken ile ilişkili olan açıklayıcı değişkenlerin tespiti mümkündür. Bu çalışmada ridge, LASSO, elastik net, uyarlamalı LASSO konveks cezalı regresyon yöntemleri ile SCAD ve MCP konveks olmayan cezalı regresyon yöntemlerinin gerçek katsayı vektörünün özelliklerine bağlı olarak performansları simülasyon çalışmaları ile karşılaştırılmıştır. Yöntemlere dayalı olarak oluşturulan modellerin ön tahmin performansının karşılaştırılması için test kümesi hata kareler ortalaması kullanılırken yöntemlerin değişken seçimindeki performanslarının karşılaştırılması için yanlış sınıflama oranı, yanlış pozitif oranı ve aktif küme büyüklükleri elde edilmiştir. Simülasyon çalışmalarına göre gerçek katsayı vektörünün yapısının konveks ve konveks olmayan cezalı regresyon yöntemleri ile oluşturulan modellerin performansı üzerinde kayda değer bir etkisinin olduğu görülmüştür.\",\"PeriodicalId\":486927,\"journal\":{\"name\":\"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi\",\"volume\":\"57 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.25092/baunfbed.1299583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.25092/baunfbed.1299583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线性回归中,根据数据集的结构,使用惩罚回归方法可在初步估计中获得更准确的结果。此外,通过使用惩罚回归方法,还可以确定与响应变量相关的解释变量。在本研究中,根据实际系数向量的特点,将脊回归、LASSO、弹性网、自适应 LASSO 凸惩罚回归方法以及 SCAD 和 MCP 非凸惩罚回归方法的性能与模拟研究进行了比较。测试集误差均方差平均值用于比较基于各种方法的模型的初步预测性能,误分类率、假阳性率和活动聚类大小则用于比较各种方法在变量选择方面的性能。根据模拟研究,真实系数向量的结构对使用凸回归和非凸惩罚回归方法构建的模型的性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on comparison of convex and non-convex penalized regression methods
Doğrusal regresyonda cezalı regresyon yöntemleri veri kümesinin yapısına bağlı olarak ön tahminde daha doğru sonuçlar elde edilmesi için kullanılır. Ayrıca cezalı regresyon yöntemleri kullanılarak yanıt değişken ile ilişkili olan açıklayıcı değişkenlerin tespiti mümkündür. Bu çalışmada ridge, LASSO, elastik net, uyarlamalı LASSO konveks cezalı regresyon yöntemleri ile SCAD ve MCP konveks olmayan cezalı regresyon yöntemlerinin gerçek katsayı vektörünün özelliklerine bağlı olarak performansları simülasyon çalışmaları ile karşılaştırılmıştır. Yöntemlere dayalı olarak oluşturulan modellerin ön tahmin performansının karşılaştırılması için test kümesi hata kareler ortalaması kullanılırken yöntemlerin değişken seçimindeki performanslarının karşılaştırılması için yanlış sınıflama oranı, yanlış pozitif oranı ve aktif küme büyüklükleri elde edilmiştir. Simülasyon çalışmalarına göre gerçek katsayı vektörünün yapısının konveks ve konveks olmayan cezalı regresyon yöntemleri ile oluşturulan modellerin performansı üzerinde kayda değer bir etkisinin olduğu görülmüştür.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信