利用无监督学习对小数据进行铣刀故障诊断:稳健自主的框架

A. Patange, R. Soman, S. Pardeshi, Mustafa Kuntoglu, W. Ostachowicz
{"title":"利用无监督学习对小数据进行铣刀故障诊断:稳健自主的框架","authors":"A. Patange, R. Soman, S. Pardeshi, Mustafa Kuntoglu, W. Ostachowicz","doi":"10.17531/ein/178274","DOIUrl":null,"url":null,"abstract":"Tool condition affects the tolerances and the energy consumption and hence needs to be monitored. Artificial intelligence based data-driven techniques for tool condition determination are proposed. Unfortunately, the data-driven techniques are data-hungry. This paper proposes a methodology for classification based on unsupervised learning using limited unlabeled training data. The work presents a multi-class classification problem for the tool condition monitoring. The principal component analysis (PCA) is employed for dimensionality reduction and the principal components (PCs) are used as input for classification using k-means clustering. New collected data is then projected on the PC space, and classified using the clusters from the training. The methodology has been applied for classification of tool faults in 6 classes. The use of limited input parameters from the user makes the method ideal for monitoring a large number of machines with minimal intervention. Furthermore, due to the small amount of data needed for the training, the method has the potential to be transferable.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"62 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milling cutter fault diagnosis using unsupervised learning on small data: A robust and autonomous framework\",\"authors\":\"A. Patange, R. Soman, S. Pardeshi, Mustafa Kuntoglu, W. Ostachowicz\",\"doi\":\"10.17531/ein/178274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tool condition affects the tolerances and the energy consumption and hence needs to be monitored. Artificial intelligence based data-driven techniques for tool condition determination are proposed. Unfortunately, the data-driven techniques are data-hungry. This paper proposes a methodology for classification based on unsupervised learning using limited unlabeled training data. The work presents a multi-class classification problem for the tool condition monitoring. The principal component analysis (PCA) is employed for dimensionality reduction and the principal components (PCs) are used as input for classification using k-means clustering. New collected data is then projected on the PC space, and classified using the clusters from the training. The methodology has been applied for classification of tool faults in 6 classes. The use of limited input parameters from the user makes the method ideal for monitoring a large number of machines with minimal intervention. Furthermore, due to the small amount of data needed for the training, the method has the potential to be transferable.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"62 51\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/178274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/178274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刀具状态会影响公差和能耗,因此需要进行监控。有人提出了基于数据驱动的人工智能技术来确定刀具状态。遗憾的是,数据驱动技术对数据要求较高。本文提出了一种基于无监督学习的分类方法,使用有限的未标记训练数据。这项工作提出了一个工具状态监测的多类分类问题。采用主成分分析法(PCA)进行降维,并将主成分(PCs)作为使用 k-means 聚类进行分类的输入。然后将新收集的数据投影到 PC 空间上,并利用训练中的聚类进行分类。该方法已应用于 6 类工具故障的分类。该方法只需用户提供有限的输入参数,因此非常适合在最少干预的情况下监控大量机器。此外,由于训练所需的数据量较小,该方法具有可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Milling cutter fault diagnosis using unsupervised learning on small data: A robust and autonomous framework
Tool condition affects the tolerances and the energy consumption and hence needs to be monitored. Artificial intelligence based data-driven techniques for tool condition determination are proposed. Unfortunately, the data-driven techniques are data-hungry. This paper proposes a methodology for classification based on unsupervised learning using limited unlabeled training data. The work presents a multi-class classification problem for the tool condition monitoring. The principal component analysis (PCA) is employed for dimensionality reduction and the principal components (PCs) are used as input for classification using k-means clustering. New collected data is then projected on the PC space, and classified using the clusters from the training. The methodology has been applied for classification of tool faults in 6 classes. The use of limited input parameters from the user makes the method ideal for monitoring a large number of machines with minimal intervention. Furthermore, due to the small amount of data needed for the training, the method has the potential to be transferable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信