{"title":"零点莱布尼兹代数的定点子代数基础","authors":"Zeynep YAPTI ÖZKURT","doi":"10.25092/baunfbed.1332488","DOIUrl":null,"url":null,"abstract":"Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.","PeriodicalId":486927,"journal":{"name":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","volume":"61 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bases of fixed point subalgebras on nilpotent Leibniz algebras\",\"authors\":\"Zeynep YAPTI ÖZKURT\",\"doi\":\"10.25092/baunfbed.1332488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.\",\"PeriodicalId\":486927,\"journal\":{\"name\":\"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi\",\"volume\":\"61 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.25092/baunfbed.1332488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.25092/baunfbed.1332488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 K 是特征为零的域,X={x_(1,) x_2,...,x_n} 和 R_m={r_(1,) ,...,r_m} 是两个变量集,F 是由 X 生成的自由左硝化莱布尼兹代数,K[R_m ] 是由 R_m 在基域 K 上生成的交换多项式代数。自变量 φ 的定点子代数是 F 的子代数,由在自变量作用下不变的元素组成。在本研究中,我们将考虑 F 的特定自变量,并确定这些自变量的定点子代数。然后,我们找到这些定点子代数的基。此外,我们还得到了这些子代数作为自由 K[R_m ] 模块的生成器。
Bases of fixed point subalgebras on nilpotent Leibniz algebras
Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.