{"title":"从新闻文本中提取商业互动知识图谱,用于商业网络分析","authors":"Didier Gohourou, Kazuhiro Kuwabara","doi":"10.3390/make6010007","DOIUrl":null,"url":null,"abstract":"Network representation of data is key to a variety of fields and their applications including trading and business. A major source of data that can be used to build insightful networks is the abundant amount of unstructured text data available through the web. The efforts to turn unstructured text data into a network have spawned different research endeavors, including the simplification of the process. This study presents the design and implementation of TraCER, a pipeline that turns unstructured text data into a graph, targeting the business networking domain. It describes the application of natural language processing techniques used to process the text, as well as the heuristics and learning algorithms that categorize the nodes and the links. The study also presents some simple yet efficient methods for the entity-linking and relation classification steps of the pipeline.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"5 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis\",\"authors\":\"Didier Gohourou, Kazuhiro Kuwabara\",\"doi\":\"10.3390/make6010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network representation of data is key to a variety of fields and their applications including trading and business. A major source of data that can be used to build insightful networks is the abundant amount of unstructured text data available through the web. The efforts to turn unstructured text data into a network have spawned different research endeavors, including the simplification of the process. This study presents the design and implementation of TraCER, a pipeline that turns unstructured text data into a graph, targeting the business networking domain. It describes the application of natural language processing techniques used to process the text, as well as the heuristics and learning algorithms that categorize the nodes and the links. The study also presents some simple yet efficient methods for the entity-linking and relation classification steps of the pipeline.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"5 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make6010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make6010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis
Network representation of data is key to a variety of fields and their applications including trading and business. A major source of data that can be used to build insightful networks is the abundant amount of unstructured text data available through the web. The efforts to turn unstructured text data into a network have spawned different research endeavors, including the simplification of the process. This study presents the design and implementation of TraCER, a pipeline that turns unstructured text data into a graph, targeting the business networking domain. It describes the application of natural language processing techniques used to process the text, as well as the heuristics and learning algorithms that categorize the nodes and the links. The study also presents some simple yet efficient methods for the entity-linking and relation classification steps of the pipeline.