{"title":"用加权逻辑回归和倾向得分匹配法处理不平衡数据","authors":"L. Agrawal, Pavankumar Mulgund, Raj Sharman","doi":"10.4018/jdm.335888","DOIUrl":null,"url":null,"abstract":"The adoption of empirical methods for secondary data analysis has witnessed a significant surge in IS research. However, the secondary data is often incomplete, skewed, and imbalanced at best. Consequently, there is a growing recognition of the importance of empirical techniques and methodological decisions made to navigate through such issues. However, there is not enough methodological guidance, especially in the form of a worked case study that demonstrates the challenges of imbalanced datasets and offers prescriptive on how to deal with them. Using data on P2P money transfer services, this article presents a running example by analyzing the same dataset using several different methods. It then compares the outcomes of these choices and explicates the rationale behind some decisions such as inclusion and categorization of variables, parameter setting, and model selection. Finally, the article discusses certain regressions models such as weighted logistic regression and propensity matching, and when they should be used.","PeriodicalId":51086,"journal":{"name":"Journal of Database Management","volume":"5 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling Imbalanced Data With Weighted Logistic Regression and Propensity Score Matching methods\",\"authors\":\"L. Agrawal, Pavankumar Mulgund, Raj Sharman\",\"doi\":\"10.4018/jdm.335888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adoption of empirical methods for secondary data analysis has witnessed a significant surge in IS research. However, the secondary data is often incomplete, skewed, and imbalanced at best. Consequently, there is a growing recognition of the importance of empirical techniques and methodological decisions made to navigate through such issues. However, there is not enough methodological guidance, especially in the form of a worked case study that demonstrates the challenges of imbalanced datasets and offers prescriptive on how to deal with them. Using data on P2P money transfer services, this article presents a running example by analyzing the same dataset using several different methods. It then compares the outcomes of these choices and explicates the rationale behind some decisions such as inclusion and categorization of variables, parameter setting, and model selection. Finally, the article discusses certain regressions models such as weighted logistic regression and propensity matching, and when they should be used.\",\"PeriodicalId\":51086,\"journal\":{\"name\":\"Journal of Database Management\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Database Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/jdm.335888\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Database Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/jdm.335888","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Handling Imbalanced Data With Weighted Logistic Regression and Propensity Score Matching methods
The adoption of empirical methods for secondary data analysis has witnessed a significant surge in IS research. However, the secondary data is often incomplete, skewed, and imbalanced at best. Consequently, there is a growing recognition of the importance of empirical techniques and methodological decisions made to navigate through such issues. However, there is not enough methodological guidance, especially in the form of a worked case study that demonstrates the challenges of imbalanced datasets and offers prescriptive on how to deal with them. Using data on P2P money transfer services, this article presents a running example by analyzing the same dataset using several different methods. It then compares the outcomes of these choices and explicates the rationale behind some decisions such as inclusion and categorization of variables, parameter setting, and model selection. Finally, the article discusses certain regressions models such as weighted logistic regression and propensity matching, and when they should be used.
期刊介绍:
The Journal of Database Management (JDM) publishes original research on all aspects of database management, design science, systems analysis and design, and software engineering. The primary mission of JDM is to be instrumental in the improvement and development of theory and practice related to information technology, information systems, and management of knowledge resources. The journal is targeted at both academic researchers and practicing IT professionals.