通过用于需求预测和库存管理的 BO-CNN-LSTM 优化供应链管理

Rong Liu, Vinay Vakharia
{"title":"通过用于需求预测和库存管理的 BO-CNN-LSTM 优化供应链管理","authors":"Rong Liu, Vinay Vakharia","doi":"10.4018/joeuc.335591","DOIUrl":null,"url":null,"abstract":"This project addresses demand forecasting and inventory optimization in supply chain management. Traditional methods have limitations with complex demand patterns and large-scale data. Deep learning techniques are employed to enhance accuracy and efficiency. The project utilizes BO-CNN-LSTM, leveraging Bayesian optimization for hyperparameter tuning, Convolutional Neural Networks (CNNs) for spatiotemporal feature extraction, and Long Short-Term Memory Networks (LSTMs) for modeling sequential data. Experimental results validate the effectiveness of the approach, outperforming traditional methods. Practical implementation in supply chain management improves operational efficiency and cost control.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"20 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Supply Chain Management Through BO-CNN-LSTM for Demand Forecasting and Inventory Management\",\"authors\":\"Rong Liu, Vinay Vakharia\",\"doi\":\"10.4018/joeuc.335591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project addresses demand forecasting and inventory optimization in supply chain management. Traditional methods have limitations with complex demand patterns and large-scale data. Deep learning techniques are employed to enhance accuracy and efficiency. The project utilizes BO-CNN-LSTM, leveraging Bayesian optimization for hyperparameter tuning, Convolutional Neural Networks (CNNs) for spatiotemporal feature extraction, and Long Short-Term Memory Networks (LSTMs) for modeling sequential data. Experimental results validate the effectiveness of the approach, outperforming traditional methods. Practical implementation in supply chain management improves operational efficiency and cost control.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"20 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.335591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.335591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该项目涉及供应链管理中的需求预测和库存优化。传统方法在处理复杂的需求模式和大规模数据时存在局限性。本项目采用深度学习技术来提高准确性和效率。该项目利用贝叶斯优化法进行超参数调整,利用卷积神经网络(CNNs)进行时空特征提取,利用长短期记忆网络(LSTMs)对顺序数据建模,从而采用了 BO-CNN-LSTM 技术。实验结果验证了该方法的有效性,其性能优于传统方法。在供应链管理中的实际应用提高了运营效率和成本控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Supply Chain Management Through BO-CNN-LSTM for Demand Forecasting and Inventory Management
This project addresses demand forecasting and inventory optimization in supply chain management. Traditional methods have limitations with complex demand patterns and large-scale data. Deep learning techniques are employed to enhance accuracy and efficiency. The project utilizes BO-CNN-LSTM, leveraging Bayesian optimization for hyperparameter tuning, Convolutional Neural Networks (CNNs) for spatiotemporal feature extraction, and Long Short-Term Memory Networks (LSTMs) for modeling sequential data. Experimental results validate the effectiveness of the approach, outperforming traditional methods. Practical implementation in supply chain management improves operational efficiency and cost control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信