海底管道探测中的声纳图像智能处理:回顾与应用

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Bo Shi, Tianyu Cao, Qiqi Ge, Yuan Lin, Zitao Wang
{"title":"海底管道探测中的声纳图像智能处理:回顾与应用","authors":"Bo Shi, Tianyu Cao, Qiqi Ge, Yuan Lin, Zitao Wang","doi":"10.1088/1361-6501/ad1919","DOIUrl":null,"url":null,"abstract":"Subsea pipelines rely primarily on imaging sonar for detection and identification. We analyze the imaging principles of side scan sonar, multi-beam sonar, synthetic aperture sonar, seafloor penetrating sonar and forward-looking sonar. We discuss their effectiveness in detecting seabed pipelines, as well as their limitations in image recognition capabilities. As intelligent algorithms have become increasingly important in the field of image processing, we review the sonar image intelligent detection and recognition algorithms in the past six years and summarize the internal principles and application effects of classic algorithms such as Scale-Invariant Feature Transform, K-means algorithm, and constant false-alarm rate that currently show good application prospects. Simultaneously, we review the particular strengths exhibited by these algorithms, such as contour feature extraction, image segmentation and clustering, target recognition under background noise, etc. The research on intelligent processing of sonar images opens up a new way to solve the difficult problem of the seabed targets detection and recognition.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"59 15","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonar image intelligent processing in seabed pipeline detection: review and application\",\"authors\":\"Bo Shi, Tianyu Cao, Qiqi Ge, Yuan Lin, Zitao Wang\",\"doi\":\"10.1088/1361-6501/ad1919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subsea pipelines rely primarily on imaging sonar for detection and identification. We analyze the imaging principles of side scan sonar, multi-beam sonar, synthetic aperture sonar, seafloor penetrating sonar and forward-looking sonar. We discuss their effectiveness in detecting seabed pipelines, as well as their limitations in image recognition capabilities. As intelligent algorithms have become increasingly important in the field of image processing, we review the sonar image intelligent detection and recognition algorithms in the past six years and summarize the internal principles and application effects of classic algorithms such as Scale-Invariant Feature Transform, K-means algorithm, and constant false-alarm rate that currently show good application prospects. Simultaneously, we review the particular strengths exhibited by these algorithms, such as contour feature extraction, image segmentation and clustering, target recognition under background noise, etc. The research on intelligent processing of sonar images opens up a new way to solve the difficult problem of the seabed targets detection and recognition.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"59 15\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1919\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1919","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海底管道主要依靠成像声纳进行探测和识别。我们分析了侧扫声纳、多波束声纳、合成孔径声纳、海底穿透声纳和前视声纳的成像原理。我们讨论了它们在探测海底管道方面的有效性,以及在图像识别能力方面的局限性。随着智能算法在图像处理领域越来越重要,我们回顾了近六年来的声纳图像智能检测和识别算法,总结了目前具有良好应用前景的尺度不变特征变换、K-means 算法、恒误报率等经典算法的内部原理和应用效果。同时,我们回顾了这些算法在轮廓特征提取、图像分割与聚类、背景噪声下的目标识别等方面所表现出的特殊优势。声纳图像智能处理研究为解决海底目标检测与识别这一难题开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonar image intelligent processing in seabed pipeline detection: review and application
Subsea pipelines rely primarily on imaging sonar for detection and identification. We analyze the imaging principles of side scan sonar, multi-beam sonar, synthetic aperture sonar, seafloor penetrating sonar and forward-looking sonar. We discuss their effectiveness in detecting seabed pipelines, as well as their limitations in image recognition capabilities. As intelligent algorithms have become increasingly important in the field of image processing, we review the sonar image intelligent detection and recognition algorithms in the past six years and summarize the internal principles and application effects of classic algorithms such as Scale-Invariant Feature Transform, K-means algorithm, and constant false-alarm rate that currently show good application prospects. Simultaneously, we review the particular strengths exhibited by these algorithms, such as contour feature extraction, image segmentation and clustering, target recognition under background noise, etc. The research on intelligent processing of sonar images opens up a new way to solve the difficult problem of the seabed targets detection and recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信