预测随机行走和数据分割预测区域

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2024-01-08 DOI:10.3390/stats7010002
Mulubrhan G. Haile, Lingling Zhang, David J. Olive
{"title":"预测随机行走和数据分割预测区域","authors":"Mulubrhan G. Haile, Lingling Zhang, David J. Olive","doi":"10.3390/stats7010002","DOIUrl":null,"url":null,"abstract":"Perhaps the first nonparametric, asymptotically optimal prediction intervals are provided for univariate random walks, with applications to renewal processes. Perhaps the first nonparametric prediction regions are introduced for vector-valued random walks. This paper further derives nonparametric data-splitting prediction regions, which are underpinned by very simple theory. Some of the prediction regions can be used when the data distribution does not have first moments, and some can be used for high-dimensional data, where the number of predictors is larger than the sample size. The prediction regions can make use of many estimators of multivariate location and dispersion.","PeriodicalId":93142,"journal":{"name":"Stats","volume":"53 36","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Random Walks and a Data-Splitting Prediction Region\",\"authors\":\"Mulubrhan G. Haile, Lingling Zhang, David J. Olive\",\"doi\":\"10.3390/stats7010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perhaps the first nonparametric, asymptotically optimal prediction intervals are provided for univariate random walks, with applications to renewal processes. Perhaps the first nonparametric prediction regions are introduced for vector-valued random walks. This paper further derives nonparametric data-splitting prediction regions, which are underpinned by very simple theory. Some of the prediction regions can be used when the data distribution does not have first moments, and some can be used for high-dimensional data, where the number of predictors is larger than the sample size. The prediction regions can make use of many estimators of multivariate location and dispersion.\",\"PeriodicalId\":93142,\"journal\":{\"name\":\"Stats\",\"volume\":\"53 36\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats7010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

也许是首次为单变量随机游走提供了非参数、渐近最优预测区间,并将其应用于更新过程。本文或许首次为向量随机游走引入了非参数预测区间。本文进一步推导出了非参数数据分割预测区域,这些预测区域以非常简单的理论为基础。其中一些预测区域可用于数据分布没有第一矩的情况,还有一些预测区域可用于预测因子数量大于样本量的高维数据。预测区域可以利用多变量位置和离散性的许多估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Random Walks and a Data-Splitting Prediction Region
Perhaps the first nonparametric, asymptotically optimal prediction intervals are provided for univariate random walks, with applications to renewal processes. Perhaps the first nonparametric prediction regions are introduced for vector-valued random walks. This paper further derives nonparametric data-splitting prediction regions, which are underpinned by very simple theory. Some of the prediction regions can be used when the data distribution does not have first moments, and some can be used for high-dimensional data, where the number of predictors is larger than the sample size. The prediction regions can make use of many estimators of multivariate location and dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信