QI $$^2$ 2:数据质量保证互动工具

Simon Geerkens, Christian Sieberichs, Alexander Braun, Thomas Waschulzik
{"title":"QI $$^2$ 2:数据质量保证互动工具","authors":"Simon Geerkens,&nbsp;Christian Sieberichs,&nbsp;Alexander Braun,&nbsp;Thomas Waschulzik","doi":"10.1007/s43681-023-00390-6","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of high data quality is increasing with the growing impact and distribution of ML systems and big data. Also, the planned AI Act from the European commission defines challenging legal requirements for data quality especially for the market introduction of safety relevant ML systems. In this paper, we introduce a novel approach that supports the data quality assurance process of multiple data quality aspects. This approach enables the verification of quantitative data quality requirements. The concept and benefits are introduced and explained on small example data sets. How the method is applied is demonstrated on the well-known MNIST data set based an handwritten digits.</p></div>","PeriodicalId":72137,"journal":{"name":"AI and ethics","volume":"4 1","pages":"141 - 149"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43681-023-00390-6.pdf","citationCount":"0","resultStr":"{\"title\":\"QI\\\\(^2\\\\): an interactive tool for data quality assurance\",\"authors\":\"Simon Geerkens,&nbsp;Christian Sieberichs,&nbsp;Alexander Braun,&nbsp;Thomas Waschulzik\",\"doi\":\"10.1007/s43681-023-00390-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The importance of high data quality is increasing with the growing impact and distribution of ML systems and big data. Also, the planned AI Act from the European commission defines challenging legal requirements for data quality especially for the market introduction of safety relevant ML systems. In this paper, we introduce a novel approach that supports the data quality assurance process of multiple data quality aspects. This approach enables the verification of quantitative data quality requirements. The concept and benefits are introduced and explained on small example data sets. How the method is applied is demonstrated on the well-known MNIST data set based an handwritten digits.</p></div>\",\"PeriodicalId\":72137,\"journal\":{\"name\":\"AI and ethics\",\"volume\":\"4 1\",\"pages\":\"141 - 149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43681-023-00390-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI and ethics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43681-023-00390-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI and ethics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43681-023-00390-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能系统和大数据的影响和分布日益扩大,高数据质量的重要性也与日俱增。此外,欧盟委员会计划出台的《人工智能法案》对数据质量提出了具有挑战性的法律要求,特别是对安全相关的 ML 系统的市场引入。在本文中,我们介绍了一种新颖的方法,可支持多个数据质量方面的数据质量保证流程。这种方法可以验证定量数据质量要求。本文通过小型示例数据集介绍并解释了该方法的概念和优点。在著名的基于手写数字的 MNIST 数据集上演示了如何应用该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QI\(^2\): an interactive tool for data quality assurance

The importance of high data quality is increasing with the growing impact and distribution of ML systems and big data. Also, the planned AI Act from the European commission defines challenging legal requirements for data quality especially for the market introduction of safety relevant ML systems. In this paper, we introduce a novel approach that supports the data quality assurance process of multiple data quality aspects. This approach enables the verification of quantitative data quality requirements. The concept and benefits are introduced and explained on small example data sets. How the method is applied is demonstrated on the well-known MNIST data set based an handwritten digits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信