紧凑型曼菲尔德上索博列夫空间的相互作用:嵌入定理、不等式和紧凑性

Mogoi N. Evans, Samuel B. Apima
{"title":"紧凑型曼菲尔德上索博列夫空间的相互作用:嵌入定理、不等式和紧凑性","authors":"Mogoi N. Evans, Samuel B. Apima","doi":"10.9734/air/2024/v25i11014","DOIUrl":null,"url":null,"abstract":"This research paper explores various properties of Sobolev spaces on compact manifolds, focusing on embedding theorems, compactness, and inequalities. We establish the compact embedding of Sobolev spaces into continuous and Lebesgue spaces, as well as the continuity and compactness of embeddings between different Sobolev spaces. We also derive inequalities involving the Laplacian and gradients of functions, providing insights into their behavior on manifolds. These results contribute to our understanding of the interplay between function smoothness, continuity, and distribution on compact manifolds.","PeriodicalId":91191,"journal":{"name":"Advances in research","volume":"9 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay of Sobolev Spaces on Compact Manifolds: Embedding Theorems, Inequalities, and Compactness\",\"authors\":\"Mogoi N. Evans, Samuel B. Apima\",\"doi\":\"10.9734/air/2024/v25i11014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper explores various properties of Sobolev spaces on compact manifolds, focusing on embedding theorems, compactness, and inequalities. We establish the compact embedding of Sobolev spaces into continuous and Lebesgue spaces, as well as the continuity and compactness of embeddings between different Sobolev spaces. We also derive inequalities involving the Laplacian and gradients of functions, providing insights into their behavior on manifolds. These results contribute to our understanding of the interplay between function smoothness, continuity, and distribution on compact manifolds.\",\"PeriodicalId\":91191,\"journal\":{\"name\":\"Advances in research\",\"volume\":\"9 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/air/2024/v25i11014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/air/2024/v25i11014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇研究论文探讨了紧凑流形上索波列夫空间的各种性质,重点是嵌入定理、紧凑性和不等式。我们建立了 Sobolev 空间到连续空间和 Lebesgue 空间的紧凑嵌入,以及不同 Sobolev 空间之间嵌入的连续性和紧凑性。我们还推导出了涉及函数拉普拉斯和梯度的不等式,从而深入了解了它们在流形上的行为。这些结果有助于我们理解紧凑流形上函数平滑性、连续性和分布之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interplay of Sobolev Spaces on Compact Manifolds: Embedding Theorems, Inequalities, and Compactness
This research paper explores various properties of Sobolev spaces on compact manifolds, focusing on embedding theorems, compactness, and inequalities. We establish the compact embedding of Sobolev spaces into continuous and Lebesgue spaces, as well as the continuity and compactness of embeddings between different Sobolev spaces. We also derive inequalities involving the Laplacian and gradients of functions, providing insights into their behavior on manifolds. These results contribute to our understanding of the interplay between function smoothness, continuity, and distribution on compact manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信