利用机器学习优化通信主动粒子的集体行为

Jens Grauer, F. J. Schwarzendahl, Hartmut Löwen, B. Liebchen
{"title":"利用机器学习优化通信主动粒子的集体行为","authors":"Jens Grauer, F. J. Schwarzendahl, Hartmut Löwen, B. Liebchen","doi":"10.1088/2632-2153/ad1c33","DOIUrl":null,"url":null,"abstract":"\n Bacteria and other self-propelling microorganisms produce and respond to signaling molecules to communicate with each other (quorum sensing) and to direct their collective behavior. Here, we explore agents (active particles) which communicate with each other to coordinate their collective dynamics to optimize nutrient consumption. Using reinforcement learning and neural networks, we identify three different strategies: a \"clustering strategy\", where the agents accumulate in regions of high nutrient concentration; a \"spreading strategy\", where particles stay away from each other to avoid competing for sparse resources; and an \"adaptive strategy\", where the agents adaptively decide to either follow or stay away from others. Our work exemplifies the idea that machine learning can be used to determine parameters that are evolutionarily optimized in biological systems but often occur as unknown parameters in mathematical models describing their dynamics.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"49 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing collective behavior of communicating active particles with machine learning\",\"authors\":\"Jens Grauer, F. J. Schwarzendahl, Hartmut Löwen, B. Liebchen\",\"doi\":\"10.1088/2632-2153/ad1c33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Bacteria and other self-propelling microorganisms produce and respond to signaling molecules to communicate with each other (quorum sensing) and to direct their collective behavior. Here, we explore agents (active particles) which communicate with each other to coordinate their collective dynamics to optimize nutrient consumption. Using reinforcement learning and neural networks, we identify three different strategies: a \\\"clustering strategy\\\", where the agents accumulate in regions of high nutrient concentration; a \\\"spreading strategy\\\", where particles stay away from each other to avoid competing for sparse resources; and an \\\"adaptive strategy\\\", where the agents adaptively decide to either follow or stay away from others. Our work exemplifies the idea that machine learning can be used to determine parameters that are evolutionarily optimized in biological systems but often occur as unknown parameters in mathematical models describing their dynamics.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"49 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad1c33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad1c33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌和其他自走微生物会产生信号分子并对其做出反应,从而相互交流(法定人数感应)并指导其集体行为。在这里,我们探讨了相互通信的代理(活性颗粒)如何协调它们的集体动态以优化营养消耗。利用强化学习和神经网络,我们确定了三种不同的策略:一种是 "聚类策略",即代理聚集在营养物质浓度高的区域;一种是 "扩散策略",即粒子之间相互远离,以避免争夺稀少的资源;还有一种是 "自适应策略",即代理自适应地决定跟随或远离其他代理。我们的工作体现了这样一种理念,即机器学习可用于确定生物系统中进化优化的参数,但这些参数在描述生物系统动态的数学模型中往往是未知参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing collective behavior of communicating active particles with machine learning
Bacteria and other self-propelling microorganisms produce and respond to signaling molecules to communicate with each other (quorum sensing) and to direct their collective behavior. Here, we explore agents (active particles) which communicate with each other to coordinate their collective dynamics to optimize nutrient consumption. Using reinforcement learning and neural networks, we identify three different strategies: a "clustering strategy", where the agents accumulate in regions of high nutrient concentration; a "spreading strategy", where particles stay away from each other to avoid competing for sparse resources; and an "adaptive strategy", where the agents adaptively decide to either follow or stay away from others. Our work exemplifies the idea that machine learning can be used to determine parameters that are evolutionarily optimized in biological systems but often occur as unknown parameters in mathematical models describing their dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信