{"title":"纳米颗粒直径对使用纳米润滑剂的流体动力轴颈轴承性能影响的研究","authors":"Abdurrahim Dal","doi":"10.1177/13506501231224256","DOIUrl":null,"url":null,"abstract":"The nanolubricant's effectiveness on the bearings’ performance depends on the types of nanoparticles, volume ratio, and their size and/or diameter. Although the nanolubricant influences on the characteristics of the journal bearings are well known, cost-effective solutions for using nanolubricants, have continued to need in industrial applications. Because the nanoparticle's diameter plays a key role in the fluid with nanoparticle additives, research on its effect is important for hydrodynamic journal bearing. In this work, the nanoparticle diameter impacts on the characteristics of the hydrodynamic journal bearings are investigated with under thermal effects. At first, four hydrodynamic journal bearings have different parameters such as radial clearance and bearing length–diameter ratio are considered and designed. Then, the lubricant flow through the radial clearance is modeled with Dowson's equation. Besides, the temperature field in the journal and the lubricant are governed by the heat conduction and energy equations, respectively. The physical and thermal properties of the nanolubricant are expressed by considering nanoparticle diameter and the volume ratio. Then, an algorithm is developed to solve the mathematical models based on the finite difference method. Finally, a serial simulation is conducted under different nanoparticle diameters and operational conditions. When the nanoparticle diameter becomes small, the temperature and pressure values of the nanolubricant, load capacity, and stiffness increase.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"17 9","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant\",\"authors\":\"Abdurrahim Dal\",\"doi\":\"10.1177/13506501231224256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanolubricant's effectiveness on the bearings’ performance depends on the types of nanoparticles, volume ratio, and their size and/or diameter. Although the nanolubricant influences on the characteristics of the journal bearings are well known, cost-effective solutions for using nanolubricants, have continued to need in industrial applications. Because the nanoparticle's diameter plays a key role in the fluid with nanoparticle additives, research on its effect is important for hydrodynamic journal bearing. In this work, the nanoparticle diameter impacts on the characteristics of the hydrodynamic journal bearings are investigated with under thermal effects. At first, four hydrodynamic journal bearings have different parameters such as radial clearance and bearing length–diameter ratio are considered and designed. Then, the lubricant flow through the radial clearance is modeled with Dowson's equation. Besides, the temperature field in the journal and the lubricant are governed by the heat conduction and energy equations, respectively. The physical and thermal properties of the nanolubricant are expressed by considering nanoparticle diameter and the volume ratio. Then, an algorithm is developed to solve the mathematical models based on the finite difference method. Finally, a serial simulation is conducted under different nanoparticle diameters and operational conditions. When the nanoparticle diameter becomes small, the temperature and pressure values of the nanolubricant, load capacity, and stiffness increase.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231224256\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231224256","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant
The nanolubricant's effectiveness on the bearings’ performance depends on the types of nanoparticles, volume ratio, and their size and/or diameter. Although the nanolubricant influences on the characteristics of the journal bearings are well known, cost-effective solutions for using nanolubricants, have continued to need in industrial applications. Because the nanoparticle's diameter plays a key role in the fluid with nanoparticle additives, research on its effect is important for hydrodynamic journal bearing. In this work, the nanoparticle diameter impacts on the characteristics of the hydrodynamic journal bearings are investigated with under thermal effects. At first, four hydrodynamic journal bearings have different parameters such as radial clearance and bearing length–diameter ratio are considered and designed. Then, the lubricant flow through the radial clearance is modeled with Dowson's equation. Besides, the temperature field in the journal and the lubricant are governed by the heat conduction and energy equations, respectively. The physical and thermal properties of the nanolubricant are expressed by considering nanoparticle diameter and the volume ratio. Then, an algorithm is developed to solve the mathematical models based on the finite difference method. Finally, a serial simulation is conducted under different nanoparticle diameters and operational conditions. When the nanoparticle diameter becomes small, the temperature and pressure values of the nanolubricant, load capacity, and stiffness increase.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).