Jisun Lee, Jay Hyoun Kwon, Chang Yong Park, Huidong Kim, In-Mook Choi, Jin Wan Chung, Won-Kyu Lee
{"title":"对 KRISS 频率标准中相对论红移的评估","authors":"Jisun Lee, Jay Hyoun Kwon, Chang Yong Park, Huidong Kim, In-Mook Choi, Jin Wan Chung, Won-Kyu Lee","doi":"10.1088/1681-7575/ad1ca9","DOIUrl":null,"url":null,"abstract":"\n Relativistic redshift correction should be accurately considered in frequency comparisons between frequency standards. In this study, we evaluated the relativistic redshift at Korea Research Institute of Standards and Science (KRISS) using three different methods, depending on whether the approach was traditional or modern or whether the geopotential model was global or local. The results of the three methods agreed well with one another, and the height of an Yb optical lattice clock (KRISS-Yb1) was determined to be 75.15 m with an uncertainty of 0.04 m with respect to the conventionally adopted equipotential surface W_0^CGPM, the value of which is defined to be 62 636 856.0 m2s-2. Accordingly, the relativistic redshift of KRISS-Yb1 was evaluated to be 8.193(4) × 10−15. These data are applicable to the frequency standards at KRISS, one of which regularly participates in the calibration of the International Atomic Time (TAI).","PeriodicalId":18444,"journal":{"name":"Metrologia","volume":"21 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the relativistic redshift in frequency standards at KRISS\",\"authors\":\"Jisun Lee, Jay Hyoun Kwon, Chang Yong Park, Huidong Kim, In-Mook Choi, Jin Wan Chung, Won-Kyu Lee\",\"doi\":\"10.1088/1681-7575/ad1ca9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Relativistic redshift correction should be accurately considered in frequency comparisons between frequency standards. In this study, we evaluated the relativistic redshift at Korea Research Institute of Standards and Science (KRISS) using three different methods, depending on whether the approach was traditional or modern or whether the geopotential model was global or local. The results of the three methods agreed well with one another, and the height of an Yb optical lattice clock (KRISS-Yb1) was determined to be 75.15 m with an uncertainty of 0.04 m with respect to the conventionally adopted equipotential surface W_0^CGPM, the value of which is defined to be 62 636 856.0 m2s-2. Accordingly, the relativistic redshift of KRISS-Yb1 was evaluated to be 8.193(4) × 10−15. These data are applicable to the frequency standards at KRISS, one of which regularly participates in the calibration of the International Atomic Time (TAI).\",\"PeriodicalId\":18444,\"journal\":{\"name\":\"Metrologia\",\"volume\":\"21 7\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrologia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1681-7575/ad1ca9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrologia","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1681-7575/ad1ca9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Evaluation of the relativistic redshift in frequency standards at KRISS
Relativistic redshift correction should be accurately considered in frequency comparisons between frequency standards. In this study, we evaluated the relativistic redshift at Korea Research Institute of Standards and Science (KRISS) using three different methods, depending on whether the approach was traditional or modern or whether the geopotential model was global or local. The results of the three methods agreed well with one another, and the height of an Yb optical lattice clock (KRISS-Yb1) was determined to be 75.15 m with an uncertainty of 0.04 m with respect to the conventionally adopted equipotential surface W_0^CGPM, the value of which is defined to be 62 636 856.0 m2s-2. Accordingly, the relativistic redshift of KRISS-Yb1 was evaluated to be 8.193(4) × 10−15. These data are applicable to the frequency standards at KRISS, one of which regularly participates in the calibration of the International Atomic Time (TAI).
期刊介绍:
Published 6 times per year, Metrologia covers the fundamentals of measurements, particularly those dealing with the seven base units of the International System of Units (metre, kilogram, second, ampere, kelvin, candela, mole) or proposals to replace them.
The journal also publishes papers that contribute to the solution of difficult measurement problems and improve the accuracy of derived units and constants that are of fundamental importance to physics.
In addition to regular papers, the journal publishes review articles, issues devoted to single topics of timely interest and occasional conference proceedings. Letters to the Editor and Short Communications (generally three pages or less) are also considered.