活塞环 - 缸套系统与人工陈化超低粘度发动机油的摩擦和磨损

Q2 Engineering
András Lajos Nagy
{"title":"活塞环 - 缸套系统与人工陈化超低粘度发动机油的摩擦和磨损","authors":"András Lajos Nagy","doi":"10.3311/pptr.22918","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the performance of artificially aged prototype engine oils through friction and wear experiments. Experiments were performed on a piston ring – cylinder liner model system with boundary conditions derived from real-life operating conditions. The experimental design implemented two prototype oils (SAE 0W-12 and 0W-16) in unaltered and artificially aged form. An additional fully formulated off-the-shelf engine oil (SAE 0W-20) was also aged and analyzed as reference. Oil samples were artificially aged in a custom rig, to simulate long-term in-engine use through thermal cycling at 180 °C. Fourier Transformed Infrared Spectroscopy of the lubricant samples highlighted a depletion of zinc dialkyl-ditiophosphate antiwear additives in all cases, which is comparable to a selected in-service oil. Oxidation was also measurable, albeit lower compared to the in-service sample. Averaged friction coefficients showed a ranking of aged 0W-12 < aged 0W-16 < unaltered 0W-12 < unaltered 0W-16. A decrease in surface roughness was experienced with aged oil samples, whereas unaltered 0W-16 oil produced an unexpected transition in the wear phenomenon and resulted in severe wear.","PeriodicalId":39536,"journal":{"name":"Periodica Polytechnica Transportation Engineering","volume":"29 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction and Wear of the Piston Ring – Cylinder Liner System with Artificially Aged Ultra-low Viscosity Engine Oils\",\"authors\":\"András Lajos Nagy\",\"doi\":\"10.3311/pptr.22918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate the performance of artificially aged prototype engine oils through friction and wear experiments. Experiments were performed on a piston ring – cylinder liner model system with boundary conditions derived from real-life operating conditions. The experimental design implemented two prototype oils (SAE 0W-12 and 0W-16) in unaltered and artificially aged form. An additional fully formulated off-the-shelf engine oil (SAE 0W-20) was also aged and analyzed as reference. Oil samples were artificially aged in a custom rig, to simulate long-term in-engine use through thermal cycling at 180 °C. Fourier Transformed Infrared Spectroscopy of the lubricant samples highlighted a depletion of zinc dialkyl-ditiophosphate antiwear additives in all cases, which is comparable to a selected in-service oil. Oxidation was also measurable, albeit lower compared to the in-service sample. Averaged friction coefficients showed a ranking of aged 0W-12 < aged 0W-16 < unaltered 0W-12 < unaltered 0W-16. A decrease in surface roughness was experienced with aged oil samples, whereas unaltered 0W-16 oil produced an unexpected transition in the wear phenomenon and resulted in severe wear.\",\"PeriodicalId\":39536,\"journal\":{\"name\":\"Periodica Polytechnica Transportation Engineering\",\"volume\":\"29 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Transportation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/pptr.22918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/pptr.22918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过摩擦和磨损实验研究人工老化原型发动机油的性能。实验是在活塞环-气缸套模型系统上进行的,其边界条件源自实际工作条件。实验设计采用了两种原型机油(SAE 0W-12 和 0W-16),分别为未改变和人工老化形式。另外一种全配方的现成机油(SAE 0W-20)也进行了老化和分析,作为参考。机油样品是在定制设备中进行人工老化的,通过 180 °C 的热循环来模拟发动机内的长期使用。润滑油样本的傅立叶变换红外光谱分析结果表明,在所有情况下,二烷基二硫代磷酸锌抗磨添加剂都出现了损耗,这与选定的在用机油相当。此外,还可测量到氧化现象,尽管与使用中的样本相比程度较低。平均摩擦系数显示,老化 0W-12 < 老化 0W-16 < 未改变 0W-12 < 未改变 0W-16。老化油样的表面粗糙度有所下降,而未改变的 0W-16 油样的磨损现象出现了意想不到的转变,导致严重磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Friction and Wear of the Piston Ring – Cylinder Liner System with Artificially Aged Ultra-low Viscosity Engine Oils
This study aims to investigate the performance of artificially aged prototype engine oils through friction and wear experiments. Experiments were performed on a piston ring – cylinder liner model system with boundary conditions derived from real-life operating conditions. The experimental design implemented two prototype oils (SAE 0W-12 and 0W-16) in unaltered and artificially aged form. An additional fully formulated off-the-shelf engine oil (SAE 0W-20) was also aged and analyzed as reference. Oil samples were artificially aged in a custom rig, to simulate long-term in-engine use through thermal cycling at 180 °C. Fourier Transformed Infrared Spectroscopy of the lubricant samples highlighted a depletion of zinc dialkyl-ditiophosphate antiwear additives in all cases, which is comparable to a selected in-service oil. Oxidation was also measurable, albeit lower compared to the in-service sample. Averaged friction coefficients showed a ranking of aged 0W-12 < aged 0W-16 < unaltered 0W-12 < unaltered 0W-16. A decrease in surface roughness was experienced with aged oil samples, whereas unaltered 0W-16 oil produced an unexpected transition in the wear phenomenon and resulted in severe wear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica Transportation Engineering
Periodica Polytechnica Transportation Engineering Engineering-Automotive Engineering
CiteScore
2.60
自引率
0.00%
发文量
47
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信