F. Reffuveille, Yasser Dghoughi, M. Colin, M. Torres, C. de la Fuente-Nunez
{"title":"抗生物膜方法是治疗感染的新模式","authors":"F. Reffuveille, Yasser Dghoughi, M. Colin, M. Torres, C. de la Fuente-Nunez","doi":"10.1088/2516-1091/ad1cd6","DOIUrl":null,"url":null,"abstract":"\n The lack of effective antibiotics for drug-resistant infections has led the World Health Organization (WHO) to declare antibiotic resistance a global priority. Most bacterial infections are caused by microbes growing in structured communities called biofilms. Bacteria growing in biofilms are less susceptible to antibiotics than their planktonic counterparts. Despite their significant clinical implications, bacterial biofilms have not received the attention they warrant, with no approved antibiotics specifically designed for their eradication. In this paper, we aim to shed light on recent advancements in antibiofilm strategies that offer compelling alternatives to traditional antibiotics. Additionally, we will briefly explore the potential synergy between computational approaches, including the emerging field of artificial intelligence, and the accelerated design and discovery of novel antibiofilm molecules in the years ahead.","PeriodicalId":501097,"journal":{"name":"Progress in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiofilm approaches as a new paradigm for treating infections\",\"authors\":\"F. Reffuveille, Yasser Dghoughi, M. Colin, M. Torres, C. de la Fuente-Nunez\",\"doi\":\"10.1088/2516-1091/ad1cd6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The lack of effective antibiotics for drug-resistant infections has led the World Health Organization (WHO) to declare antibiotic resistance a global priority. Most bacterial infections are caused by microbes growing in structured communities called biofilms. Bacteria growing in biofilms are less susceptible to antibiotics than their planktonic counterparts. Despite their significant clinical implications, bacterial biofilms have not received the attention they warrant, with no approved antibiotics specifically designed for their eradication. In this paper, we aim to shed light on recent advancements in antibiofilm strategies that offer compelling alternatives to traditional antibiotics. Additionally, we will briefly explore the potential synergy between computational approaches, including the emerging field of artificial intelligence, and the accelerated design and discovery of novel antibiofilm molecules in the years ahead.\",\"PeriodicalId\":501097,\"journal\":{\"name\":\"Progress in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ad1cd6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ad1cd6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antibiofilm approaches as a new paradigm for treating infections
The lack of effective antibiotics for drug-resistant infections has led the World Health Organization (WHO) to declare antibiotic resistance a global priority. Most bacterial infections are caused by microbes growing in structured communities called biofilms. Bacteria growing in biofilms are less susceptible to antibiotics than their planktonic counterparts. Despite their significant clinical implications, bacterial biofilms have not received the attention they warrant, with no approved antibiotics specifically designed for their eradication. In this paper, we aim to shed light on recent advancements in antibiofilm strategies that offer compelling alternatives to traditional antibiotics. Additionally, we will briefly explore the potential synergy between computational approaches, including the emerging field of artificial intelligence, and the accelerated design and discovery of novel antibiofilm molecules in the years ahead.