{"title":"墨西哥城板块间和中深度板块内地震的水平和垂直地动持续时间预测模型","authors":"M. Jaimes, A. García-Soto, Gabriel Candia","doi":"10.1785/0120230153","DOIUrl":null,"url":null,"abstract":"\n In this study, we present predictive models for significant ground-motion duration from interplate and intermediate-depth intraslab earthquakes at Mexico City for the horizontal components, the vertical component, and the vertical-to-horizontal ratio case. The considered sites are located over several zones in Mexico City, from rock to soft-soil sites. For the ground-motion duration models, the significant durations for ranges between 5% and 75%, 5% and 95%, and 2.5% and 97.5% of Arias intensity are considered for the analyses. The equations were developed as functions of magnitude, distance of the earthquake, and site period using 16 and 23 event recordings from interplate and intermediate-depth intraslab earthquakes at the hill, transition, and lakebed zones of the city using mixed-effect regression analyses. For the intraslab events, in particular, the new database includes recordings from two significant normal-faulting events that occurred in 2017. The models lead to differences with respect to the previous models. Therefore, predictive models for both considered focal mechanisms are proposed. The model is valid for interplate events at distances from 280 to 500 km and magnitude Mw from 6 to 8.1, for intraslab events at distances of 100 km up to about 650 km, magnitude Mw from 5 to 8.2, and focal depths from 40 km to over 120 km.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"47 46","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontal and Vertical Ground-Motion Duration Prediction Models from Interplate and Intermediate-Depth Intraslab Earthquakes in Mexico City\",\"authors\":\"M. Jaimes, A. García-Soto, Gabriel Candia\",\"doi\":\"10.1785/0120230153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we present predictive models for significant ground-motion duration from interplate and intermediate-depth intraslab earthquakes at Mexico City for the horizontal components, the vertical component, and the vertical-to-horizontal ratio case. The considered sites are located over several zones in Mexico City, from rock to soft-soil sites. For the ground-motion duration models, the significant durations for ranges between 5% and 75%, 5% and 95%, and 2.5% and 97.5% of Arias intensity are considered for the analyses. The equations were developed as functions of magnitude, distance of the earthquake, and site period using 16 and 23 event recordings from interplate and intermediate-depth intraslab earthquakes at the hill, transition, and lakebed zones of the city using mixed-effect regression analyses. For the intraslab events, in particular, the new database includes recordings from two significant normal-faulting events that occurred in 2017. The models lead to differences with respect to the previous models. Therefore, predictive models for both considered focal mechanisms are proposed. The model is valid for interplate events at distances from 280 to 500 km and magnitude Mw from 6 to 8.1, for intraslab events at distances of 100 km up to about 650 km, magnitude Mw from 5 to 8.2, and focal depths from 40 km to over 120 km.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"47 46\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230153\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230153","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Horizontal and Vertical Ground-Motion Duration Prediction Models from Interplate and Intermediate-Depth Intraslab Earthquakes in Mexico City
In this study, we present predictive models for significant ground-motion duration from interplate and intermediate-depth intraslab earthquakes at Mexico City for the horizontal components, the vertical component, and the vertical-to-horizontal ratio case. The considered sites are located over several zones in Mexico City, from rock to soft-soil sites. For the ground-motion duration models, the significant durations for ranges between 5% and 75%, 5% and 95%, and 2.5% and 97.5% of Arias intensity are considered for the analyses. The equations were developed as functions of magnitude, distance of the earthquake, and site period using 16 and 23 event recordings from interplate and intermediate-depth intraslab earthquakes at the hill, transition, and lakebed zones of the city using mixed-effect regression analyses. For the intraslab events, in particular, the new database includes recordings from two significant normal-faulting events that occurred in 2017. The models lead to differences with respect to the previous models. Therefore, predictive models for both considered focal mechanisms are proposed. The model is valid for interplate events at distances from 280 to 500 km and magnitude Mw from 6 to 8.1, for intraslab events at distances of 100 km up to about 650 km, magnitude Mw from 5 to 8.2, and focal depths from 40 km to over 120 km.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.