{"title":"关于迭代函数式的说明","authors":"Karol Baron, Janusz Morawiec","doi":"10.2478/amsil-2023-0031","DOIUrl":null,"url":null,"abstract":"Abstract We study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x), \\varphi \\left( x \\right) = \\int_\\Omega {g\\left( w \\right)} \\varphi \\left( {f\\left( {x,\\omega } \\right)} \\right)P\\left( {d\\omega } \\right) + F\\left( x \\right), where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"55 9","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on an Iterative Functional Equation\",\"authors\":\"Karol Baron, Janusz Morawiec\",\"doi\":\"10.2478/amsil-2023-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x), \\\\varphi \\\\left( x \\\\right) = \\\\int_\\\\Omega {g\\\\left( w \\\\right)} \\\\varphi \\\\left( {f\\\\left( {x,\\\\omega } \\\\right)} \\\\right)P\\\\left( {d\\\\omega } \\\\right) + F\\\\left( x \\\\right), where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"55 9\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Abstract 我们研究了方程 ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x), \varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x、\right)P\left( {d\omega } \right) + F\left( x \right),其中 P 是 Ω 子集的 σ 代数上的概率度量,假设 F 在 f 的范围上具有霍尔德连续性。
Abstract We study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x), \varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right), where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.