{"title":"通过图像分析观察完整土工织物和缝合土工织物的拉伸试验","authors":"Chetan Bambhaniya, J. Chavda, Jignesh B. Patel","doi":"10.1680/jgein.23.00113","DOIUrl":null,"url":null,"abstract":"Geotextiles are widely used as reinforcing elements in many geotechnical engineering applications such as mechanically stabilized earth walls, reinforced soil slopes, capping of high-water content clays in landfills, reinforced embankments for railways and roadways, etc. The ultimate strength of geotextile is obtained from the load-displacement plot; however, the failure mechanism evaluation of local displacement is crucial to understand the serviceability state. In the present study, the image-based deformation measurement technique is used to evaluate the local displacement within geotextile at different locations during the wide-width tensile test. Further, the load-displacement plots are obtained for different geotextiles and a comparison is made between the measured displacements from the instruments and through an image-based deformation measurement technique. Additionally, the strength of geotextiles with imbibed defects at different orientations and corresponding failure patterns is investigated. The imbibed defect in geotextile is in the form of slits having orientations varied as vertical, horizontal, and inclined with respect to the loading direction. It has been observed that geotextile with vertical slit has the highest strength, followed by geotextile with inclined and horizontal slits. The present study results provide insight into the variation in the strength and displacement field of geotextiles having defects.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":"73 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations on tensile testing of intact and slitted geotextiles through image analysis\",\"authors\":\"Chetan Bambhaniya, J. Chavda, Jignesh B. Patel\",\"doi\":\"10.1680/jgein.23.00113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geotextiles are widely used as reinforcing elements in many geotechnical engineering applications such as mechanically stabilized earth walls, reinforced soil slopes, capping of high-water content clays in landfills, reinforced embankments for railways and roadways, etc. The ultimate strength of geotextile is obtained from the load-displacement plot; however, the failure mechanism evaluation of local displacement is crucial to understand the serviceability state. In the present study, the image-based deformation measurement technique is used to evaluate the local displacement within geotextile at different locations during the wide-width tensile test. Further, the load-displacement plots are obtained for different geotextiles and a comparison is made between the measured displacements from the instruments and through an image-based deformation measurement technique. Additionally, the strength of geotextiles with imbibed defects at different orientations and corresponding failure patterns is investigated. The imbibed defect in geotextile is in the form of slits having orientations varied as vertical, horizontal, and inclined with respect to the loading direction. It has been observed that geotextile with vertical slit has the highest strength, followed by geotextile with inclined and horizontal slits. The present study results provide insight into the variation in the strength and displacement field of geotextiles having defects.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\"73 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00113\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00113","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Observations on tensile testing of intact and slitted geotextiles through image analysis
Geotextiles are widely used as reinforcing elements in many geotechnical engineering applications such as mechanically stabilized earth walls, reinforced soil slopes, capping of high-water content clays in landfills, reinforced embankments for railways and roadways, etc. The ultimate strength of geotextile is obtained from the load-displacement plot; however, the failure mechanism evaluation of local displacement is crucial to understand the serviceability state. In the present study, the image-based deformation measurement technique is used to evaluate the local displacement within geotextile at different locations during the wide-width tensile test. Further, the load-displacement plots are obtained for different geotextiles and a comparison is made between the measured displacements from the instruments and through an image-based deformation measurement technique. Additionally, the strength of geotextiles with imbibed defects at different orientations and corresponding failure patterns is investigated. The imbibed defect in geotextile is in the form of slits having orientations varied as vertical, horizontal, and inclined with respect to the loading direction. It has been observed that geotextile with vertical slit has the highest strength, followed by geotextile with inclined and horizontal slits. The present study results provide insight into the variation in the strength and displacement field of geotextiles having defects.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.