论图形的局部度量维度

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Chenxu Yang, Xingchao Deng, Jinxia Liang, Yuhu Liu
{"title":"论图形的局部度量维度","authors":"Chenxu Yang, Xingchao Deng, Jinxia Liang, Yuhu Liu","doi":"10.1142/s0219265923500330","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a graph. A set [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we characterize the graphs with [Formula: see text]. Next, we obtain the Nordhaus–Gaddum-type results for local metric dimension. Finally, the local metric dimension of several graph classes is given.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"1 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Local Metric Dimension of Graphs\",\"authors\":\"Chenxu Yang, Xingchao Deng, Jinxia Liang, Yuhu Liu\",\"doi\":\"10.1142/s0219265923500330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a graph. A set [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we characterize the graphs with [Formula: see text]. Next, we obtain the Nordhaus–Gaddum-type results for local metric dimension. Finally, the local metric dimension of several graph classes is given.\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"1 2\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265923500330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文本]是一个图。如果存在[公式:见文本],使得任意[公式:见文本]的[公式:见文本]都是[公式:见文本]的局部解析集,那么集合[公式:见文本]就是[公式:见文本]的局部解析集。公式:见文本]的局部度量维度[公式:见文本]是[公式:见文本]所有局部解析集合的最小心数。在本文中,我们用[公式:见正文]来描述图的特征。接着,我们得到了关于局部度量维度的诺德豪斯-加登姆(Nordhaus-Gaddum)式结果。最后,我们给出了几类图的局部度量维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Local Metric Dimension of Graphs
Let [Formula: see text] be a graph. A set [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we characterize the graphs with [Formula: see text]. Next, we obtain the Nordhaus–Gaddum-type results for local metric dimension. Finally, the local metric dimension of several graph classes is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信