{"title":"半群上的广义多项式","authors":"B. Ebanks","doi":"10.2478/amsil-2023-0026","DOIUrl":null,"url":null,"abstract":"Abstract This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"3 4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Polynomials on Semigroups\",\"authors\":\"B. Ebanks\",\"doi\":\"10.2478/amsil-2023-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 本文分为两个主要部分。在第一部分中,我们证明了交换半群上广义多项式的一些基本理论可以扩展到所有半群。在第二部分中,我们证明了如果一个半群 G 的子半群 S 在 G = S - S-1 的意义上生成 G,那么 S 上在阿贝尔群 H 中取值的广义多项式可以扩展为 G 上进入 H 的广义多项式。最后,我们还简短地讨论了指数函数和广义指数多项式的可扩展性。
Abstract This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.