半群上的广义多项式

IF 0.4 Q4 MATHEMATICS
B. Ebanks
{"title":"半群上的广义多项式","authors":"B. Ebanks","doi":"10.2478/amsil-2023-0026","DOIUrl":null,"url":null,"abstract":"Abstract This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"3 4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Polynomials on Semigroups\",\"authors\":\"B. Ebanks\",\"doi\":\"10.2478/amsil-2023-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文分为两个主要部分。在第一部分中,我们证明了交换半群上广义多项式的一些基本理论可以扩展到所有半群。在第二部分中,我们证明了如果一个半群 G 的子半群 S 在 G = S - S-1 的意义上生成 G,那么 S 上在阿贝尔群 H 中取值的广义多项式可以扩展为 G 上进入 H 的广义多项式。最后,我们还简短地讨论了指数函数和广义指数多项式的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Polynomials on Semigroups
Abstract This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信