利用人工智能推进心血管风险评估:北卡罗来纳州的机遇和影响

Q2 Medicine
Katherine M. Conners, Christy L. Avery, Faisal F. Syed
{"title":"利用人工智能推进心血管风险评估:北卡罗来纳州的机遇和影响","authors":"Katherine M. Conners, Christy L. Avery, Faisal F. Syed","doi":"10.18043/001c.91424","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease mortality is increasing in North Carolina with persistent inequality by race, income, and location. Artificial intelligence (AI) can repurpose the widely available electrocardiogram (ECG) for enhanced assessment of cardiac dysfunction. By identifying accelerated cardiac aging from the ECG, AI offers novel insights into risk assessment and prevention.","PeriodicalId":39574,"journal":{"name":"North Carolina Medical Journal","volume":"15 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advancing Cardiovascular Risk Assessment with Artificial Intelligence: Opportunities and Implications in North Carolina\",\"authors\":\"Katherine M. Conners, Christy L. Avery, Faisal F. Syed\",\"doi\":\"10.18043/001c.91424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular disease mortality is increasing in North Carolina with persistent inequality by race, income, and location. Artificial intelligence (AI) can repurpose the widely available electrocardiogram (ECG) for enhanced assessment of cardiac dysfunction. By identifying accelerated cardiac aging from the ECG, AI offers novel insights into risk assessment and prevention.\",\"PeriodicalId\":39574,\"journal\":{\"name\":\"North Carolina Medical Journal\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North Carolina Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18043/001c.91424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North Carolina Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18043/001c.91424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

北卡罗来纳州的心血管疾病死亡率不断上升,但种族、收入和地区之间的不平等却持续存在。人工智能(AI)可以重新利用广泛使用的心电图(ECG)来加强对心脏功能障碍的评估。通过从心电图中识别加速的心脏衰老,人工智能为风险评估和预防提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Cardiovascular Risk Assessment with Artificial Intelligence: Opportunities and Implications in North Carolina
Cardiovascular disease mortality is increasing in North Carolina with persistent inequality by race, income, and location. Artificial intelligence (AI) can repurpose the widely available electrocardiogram (ECG) for enhanced assessment of cardiac dysfunction. By identifying accelerated cardiac aging from the ECG, AI offers novel insights into risk assessment and prevention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
North Carolina Medical Journal
North Carolina Medical Journal Medicine-Medicine (all)
CiteScore
1.40
自引率
0.00%
发文量
121
期刊介绍: NCMJ, the North Carolina Medical Journal, is meant to be read by everyone with an interest in improving the health of North Carolinians. We seek to make the Journal a sounding board for new ideas, new approaches, and new policies that will deliver high quality health care, support healthy choices, and maintain a healthy environment in our state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信