{"title":"作为铁路路堤的背靠背机械稳定土墙的特性","authors":"M. Yazdandoust, F. Daftari","doi":"10.1680/jgein.23.00126","DOIUrl":null,"url":null,"abstract":"Twelves physical model tests were carried out to investigate the role of the type and arrangement of reinforcements on the behavior of back-to-back mechanically stabilized earth walls (BBMSEWs) supporting railway tracks. Six metal-strip reinforced BBMSEW models and six geogrid reinforced models were prepared with different reinforcement arrangements and then were vertically loaded to failure using wooden railway sleepers. The findings indicated that the reinforcement stiffness played a more prominent role in improving the bearing capacity than the pull-out capacity. The connection of two opposing walls with continuous reinforcements and the complete separation of them from each other were found to be the best and worst reinforcement arrangements. respectively, for improving the bearing capacity and reducing wall deformation in BBMSEWs. The respective use of these two arrangements mobilized the maximum and minimum forces in the reinforcements. Moreover, the creation of a proper connection between the opposing walls using continuous inextensible reinforcements or those with a sufficient overlap lengths were found to be efficient solutions to preventing the propagation of a failure plane across the back-to-back MSE walls.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":"16 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of back-to-back mechanically stabilized earth walls as railway embankments\",\"authors\":\"M. Yazdandoust, F. Daftari\",\"doi\":\"10.1680/jgein.23.00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twelves physical model tests were carried out to investigate the role of the type and arrangement of reinforcements on the behavior of back-to-back mechanically stabilized earth walls (BBMSEWs) supporting railway tracks. Six metal-strip reinforced BBMSEW models and six geogrid reinforced models were prepared with different reinforcement arrangements and then were vertically loaded to failure using wooden railway sleepers. The findings indicated that the reinforcement stiffness played a more prominent role in improving the bearing capacity than the pull-out capacity. The connection of two opposing walls with continuous reinforcements and the complete separation of them from each other were found to be the best and worst reinforcement arrangements. respectively, for improving the bearing capacity and reducing wall deformation in BBMSEWs. The respective use of these two arrangements mobilized the maximum and minimum forces in the reinforcements. Moreover, the creation of a proper connection between the opposing walls using continuous inextensible reinforcements or those with a sufficient overlap lengths were found to be efficient solutions to preventing the propagation of a failure plane across the back-to-back MSE walls.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00126\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00126","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Behavior of back-to-back mechanically stabilized earth walls as railway embankments
Twelves physical model tests were carried out to investigate the role of the type and arrangement of reinforcements on the behavior of back-to-back mechanically stabilized earth walls (BBMSEWs) supporting railway tracks. Six metal-strip reinforced BBMSEW models and six geogrid reinforced models were prepared with different reinforcement arrangements and then were vertically loaded to failure using wooden railway sleepers. The findings indicated that the reinforcement stiffness played a more prominent role in improving the bearing capacity than the pull-out capacity. The connection of two opposing walls with continuous reinforcements and the complete separation of them from each other were found to be the best and worst reinforcement arrangements. respectively, for improving the bearing capacity and reducing wall deformation in BBMSEWs. The respective use of these two arrangements mobilized the maximum and minimum forces in the reinforcements. Moreover, the creation of a proper connection between the opposing walls using continuous inextensible reinforcements or those with a sufficient overlap lengths were found to be efficient solutions to preventing the propagation of a failure plane across the back-to-back MSE walls.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.