Mohammad Khalilzadeh, S. A. Banihashemi, Darko Božanić
{"title":"基于多标准决策方法和双目标优化模型的项目风险管理分步混合法","authors":"Mohammad Khalilzadeh, S. A. Banihashemi, Darko Božanić","doi":"10.31181/dmame712024884","DOIUrl":null,"url":null,"abstract":"Project success and achieving project objectives and goals highly depend on effective and thorough risk management implementation. This study provides a comprehensive and practical methodology for project risk management. In this paper, firstly, the risks were collected by analyzing the historical documents and literature. Then, the collected risks were screened using brainstorming and categorized into five groups. Subsequently, a questionnaire was made and the identified risks were validated using the Fuzzy Delphi technique. Also, the relationships between risks were determined using the Interpretive Structural Modelling (ISM) method. Moreover, the weights of the criteria used to rank the risks were calculated through the Fuzzy Best-Worst Method. Subsequently, the major risks were determined using the fuzzy WASPAS method. Furthermore, a novel bi-objective mathematical programming model was developed and solved using the Augmented Epsilon-Constraint (AEC) method to choose the optimal risk response strategies for each critical risk. The results demonstrated that the proposed framework is effective in dealing with construction project risks.","PeriodicalId":504436,"journal":{"name":"Decision Making: Applications in Management and Engineering","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Step-By-Step Hybrid Approach Based on Multi-Criteria Decision-Making Methods And A Bi-Objective Optimization Model To Project Risk Management\",\"authors\":\"Mohammad Khalilzadeh, S. A. Banihashemi, Darko Božanić\",\"doi\":\"10.31181/dmame712024884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Project success and achieving project objectives and goals highly depend on effective and thorough risk management implementation. This study provides a comprehensive and practical methodology for project risk management. In this paper, firstly, the risks were collected by analyzing the historical documents and literature. Then, the collected risks were screened using brainstorming and categorized into five groups. Subsequently, a questionnaire was made and the identified risks were validated using the Fuzzy Delphi technique. Also, the relationships between risks were determined using the Interpretive Structural Modelling (ISM) method. Moreover, the weights of the criteria used to rank the risks were calculated through the Fuzzy Best-Worst Method. Subsequently, the major risks were determined using the fuzzy WASPAS method. Furthermore, a novel bi-objective mathematical programming model was developed and solved using the Augmented Epsilon-Constraint (AEC) method to choose the optimal risk response strategies for each critical risk. The results demonstrated that the proposed framework is effective in dealing with construction project risks.\",\"PeriodicalId\":504436,\"journal\":{\"name\":\"Decision Making: Applications in Management and Engineering\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Making: Applications in Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31181/dmame712024884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making: Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame712024884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Step-By-Step Hybrid Approach Based on Multi-Criteria Decision-Making Methods And A Bi-Objective Optimization Model To Project Risk Management
Project success and achieving project objectives and goals highly depend on effective and thorough risk management implementation. This study provides a comprehensive and practical methodology for project risk management. In this paper, firstly, the risks were collected by analyzing the historical documents and literature. Then, the collected risks were screened using brainstorming and categorized into five groups. Subsequently, a questionnaire was made and the identified risks were validated using the Fuzzy Delphi technique. Also, the relationships between risks were determined using the Interpretive Structural Modelling (ISM) method. Moreover, the weights of the criteria used to rank the risks were calculated through the Fuzzy Best-Worst Method. Subsequently, the major risks were determined using the fuzzy WASPAS method. Furthermore, a novel bi-objective mathematical programming model was developed and solved using the Augmented Epsilon-Constraint (AEC) method to choose the optimal risk response strategies for each critical risk. The results demonstrated that the proposed framework is effective in dealing with construction project risks.